PDTRMM computes one of the following matrix-matrix products:
1. B<--alphaAB | 3. B<--alphaBA |
2. B<--alphaATB | 4. B<--alphaBAT |
PZTRMM computes one of the following matrix-matrix products:
1. B<--alphaAB | 3. B<--alphaBA | 5. B<--alphaAHB |
2. B<--alphaATB | 4. B<--alphaBAT | 6. B<--alphaBAH |
where, in the formulas above:
If m = 0 or n = 0, no computation is performed, and the subroutine returns after doing some parameter checking.
alpha, A, B | Subprogram |
Long-precision real | PDTRMM |
Long-precision complex | PZTRMM |
Fortran | CALL PDTRMM | PZTRMM (side, uplo, transa, diag, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b) |
C and C++ | pdtrmm | pztrmm (side, uplo, transa, diag, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b); |
If side = 'L', A is to the left of B.
If side = 'R', A is to the right of B.
Scope: global
Specified as: a single character; side = 'L' or 'R'.
If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
If transa = 'N', A is used in the computation.
If transa = 'T', AT is used in the computation.
If transa = 'C', AH is used in the computation.
Scope: global
Specified as: a single character; transa = 'N', 'T', or 'C'.
If diag = 'U', A is a unit triangular matrix.
If diag = 'N', A is not a unit triangular matrix.
Scope: global
Specified as: a single character; diag = 'U' or 'N'.
If side = 'L', it is the number of rows and columns in submatrix A used in the computation.
Scope: global
Specified as: a fullword integer; m >= 0.
If side = 'R', it is the number of rows and columns in submatrix A used in the computation.
Scope: global
Specified as: a fullword integer; n >= 0.
Scope: global
Specified as: a number of the data type indicated in Table 49.
If side = 'L', numa = m
If side = 'R', numa = n
the leading LOCp(ia+numa-1) by LOCq(ja+numa-1) part of the local array A must contain the local pieces of the leading ia+numa-1 by ja+ numa-1 part of the global matrix, and:
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 49. Details about the square block-cyclic data distribution of global matrix A are stored in desc_a.
Scope: global
Specified as: a fullword integer; 1 <= ia <= M_A and ia+numa-1 <= M_A.
Scope: global
Specified as: a fullword integer; 1 <= ja <= N_A and ja+numa-1 <= N_A.
desc_a | Name | Description | Limits | Scope |
---|---|---|---|---|
1 | DTYPE_A | Descriptor type | DTYPE_A=1 | Global |
2 | CTXT_A | BLACS context | Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP | Global |
3 | M_A | Number of rows in the global matrix |
If m = 0 and side = 'L' or n = 0 and side = 'R': M_A >= 0 Otherwise: M_A >= 1 | Global |
4 | N_A | Number of columns in the global matrix |
If m = 0 and side = 'L' or n = 0 and side = 'R': N_A >= 0 Otherwise: N_A >= 1 | Global |
5 | MB_A | Row block size | MB_A >= 1 | Global |
6 | NB_A | Column block size | NB_A >= 1 | Global |
7 | RSRC_A | The process row of the p × q grid over which the first row of the global matrix is distributed | 0 <= RSRC_A < p | Global |
8 | CSRC_A | The process column of the p × q grid over which the first column of the global matrix is distributed | 0 <= CSRC_A < q | Global |
9 | LLD_A | The leading dimension of the local array | LLD_A >= max(1,LOCp(M_A)) | Local |
Specified as: an array of (at least) length 9, containing fullword integers.
Scope: local
Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 49. Details about the block-cyclic data distribution of global matrix B are stored in desc_b.
Scope: global
Specified as: a fullword integer; 1 <= ib <= M_B and ib+m-1 <= M_B.
Scope: global
Specified as: a fullword integer; 1 <= jb <= N_B and jb+n-1 <= N_B.
desc_b | Name | Description | Limits | Scope |
---|---|---|---|---|
1 | DTYPE_B | Descriptor type | DTYPE_B=1 | Global |
2 | CTXT_B | BLACS context | Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP | Global |
3 | M_B | Number of rows in the global matrix |
If m = 0 or n = 0: M_B >= 0 Otherwise: M_B >= 1 | Global |
4 | N_B | Number of columns in the global matrix |
If m = 0 or n = 0: N_B >= 0 Otherwise: N_B >= 1 | Global |
5 | MB_B | Row block size | MB_B >= 1 | Global |
6 | NB_B | Column block size | NB_B >= 1 | Global |
7 | RSRC_B | The process row of the p × q grid over which the first row of the global matrix is distributed | 0 <= RSRC_B < p | Global |
8 | CSRC_B | The process column of the p × q grid over which the first column of the global matrix is distributed | 0 <= CSRC_B < q | Global |
9 | LLD_B | The leading dimension of the local array | LLD_B >= max(1,LOCp(M_B)) | Local |
Specified as: an array of (at least) length 9, containing fullword integers.
Scope: local
Returned as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 49.
then:
None
Unable to allocate work space
If A is not contained within a single block, that is, either of the following is true:
and:
If (m <> 0 or side <> 'L') and (n <> 0 or side <> 'R'):
where numa = m if side = 'L' and numa = n if side = 'R'.
If m <> 0 and n <> 0:
If A is not contained in a single block:
If side = 'L':
If side = 'R':
This example computes B = alphaAB using a 2 × 2 process grid.
ORDER = 'R' NPROW = 2 NPCOL = 2 CALL BLACS_GET(0, 0, ICONTXT) CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL) CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL) SIDE UPLO TRANSA DIAG M N ALPHA A IA JA DESC_A | | | | | | | | | | | CALL PDTRMM( 'L' , 'U' , 'N' , 'N' , 5 , 3 , 1.0D0 , A , 1 , 1 , DESC_A , B IB JB DESC_B | | | | B , 1 , 1 , DESC_B )
| Desc_A | Desc_B |
---|---|---|
DTYPE_ | 1 | 1 |
CTXT_ | icontxt(IOBG23) | icontxt(IOBG23) |
M_ | 5 | 5 |
N_ | 5 | 3 |
MB_ | 2 | 2 |
NB_ | 2 | 2 |
RSRC_ | 0 | 0 |
CSRC_ | 0 | 0 |
LLD_ | See below(EPSSL23) | See below(EPSSL23) |
Notes: |
Global triangular matrix A of order 5 is upper triangular with block size 2 × 2:
B,D 0 1 2 * * 0 | 3.0 -1.0 | 2.0 2.0 | 1.0 | | . -2.0 | 4.0 -1.0 | 3.0 | | -----------|-------------|------ | 1 | . . | -3.0 0.0 | 2.0 | | . . | . 4.0 | -2.0 | | -----------|-------------|------ | 2 | . . | . . | 1.0 | * *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1 -----|-----------------|------------ | 3.0 -1.0 1.0 | 2.0 2.0 0 | . -2.0 3.0 | 4.0 -1.0 | . . 1.0 | . . -----|-----------------|------------ 1 | . . 2.0 | -3.0 0.0 | . . -2.0 | . 4.0
Global rectangular 5 × 3 matrix B with block size 2 × 2:
B,D 0 1 * * 0 | 2.0 3.0 | 1.0 | | 5.0 5.0 | 4.0 | | -----------|------ | 1 | 0.0 1.0 | 2.0 | | 3.0 1.0 | -3.0 | | -----------|------ | 2 | -1.0 2.0 | 1.0 | * *
The following is the 2 × 2 process grid:
B,D | 0 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for B:
p,q | 0 | 1 -----|------------|------- | 2.0 3.0 | 1.0 0 | 5.0 5.0 | 4.0 | -1.0 2.0 | 1.0 -----|------------|------- 1 | 0.0 1.0 | 2.0 | 3.0 1.0 | -3.0
Output:
Global rectangular 5 × 3 matrix B with block size 2 × 2:
B,D 0 1 * * 0 | 6.0 10.0 | -2.0 | | -16.0 -1.0 | 6.0 | | -------------|------- | 1 | -2.0 1.0 | -4.0 | | 14.0 0.0 | -14.0 | | -------------|------- | 2 | -1.0 2.0 | 1.0 | * *
The following is the 2 × 2 process grid:
B,D | 0 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for B:
p,q | 0 | 1 -----|--------------|-------- | 6.0 10.0 | -2.0 0 | -16.0 -1.0 | 6.0 | -1.0 2.0 | 1.0 -----|--------------|-------- 1 | -2.0 1.0 | -4.0 | 14.0 0.0 | -14.0
This example computes B = alphaAB using a 2 × 2 process grid.
ORDER = 'R' NPROW = 2 NPCOL = 2 CALL BLACS_GET(0, 0, ICONTXT) CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL) CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL) SIDE UPLO TRANSA DIAG M N ALPHA A IA JA DESC_A | | | | | | | | | | | CALL PZTRMM( 'L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 1 , 1 , DESC_A , B IB JB DESC_B | | | | B , 1 , 1 , DESC_B ) ALPHA = (1.0, 0.0)
| Desc_A | Desc_B |
---|---|---|
DTYPE_ | 1 | 1 |
CTXT_ | icontxt(IOBG35) | icontxt(IOBG35) |
M_ | 5 | 5 |
N_ | 5 | 1 |
MB_ | 2 | 2 |
NB_ | 2 | 2 |
RSRC_ | 0 | 0 |
CSRC_ | 0 | 0 |
LLD_ | See below(EPSSL35) | See below(EPSSL35) |
Notes: |
Global triangular matrix A of order 5 is upper triangular with block size 2 × 2:
B,D 0 1 2 * * 0 | (-4.0, 1.0) ( 4.0,-3.0) | (-1.0, 3.0) ( 0.0, 0.0) | (-1.0, 0.0) | | . (-2.0, 0.0) | (-3.0,-1.0) (-2.0,-1.0) | ( 4.0, 3.0) | | ------------------------|-------------------------|------------ | 1 | . . | (-5.0, 3.0) (-3.0,-3.0) | (-5.0,-5.0) | | . . | . ( 4.0,-4.0) | ( 2.0, 0.0) | | ------------------------|-------------------------|------------ | 2 | . . | . . | ( 2.0,-1.0) | * *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1 -----|-------------------------------------|------------------------- | (-4.0, 1.0) ( 4.0,-3.0) (-1.0, 0.0) | (-1.0, 3.0) ( 0.0, 0.0) 0 | . (-2.0, 0.0) ( 4.0, 3.0) | (-3.0,-1.0) (-2.0,-1.0) | . . ( 2.0,-1.0) | . . -----|-------------------------------------|------------------------- 1 | . . (-5.0,-5.0) | (-5.0, 3.0) (-3.0,-3.0) | . . ( 2.0, 0.0) | . ( 4.0,-4.0)
Global rectangular 5 × 1 matrix B with block size 2 × 2:
B,D 0 * * 0 | ( 3.0, 4.0) | | (-4.0, 2.0) | | ----------- | 1 | (-5.0, 0.0) | | ( 1.0, 3.0) | | ----------- | 2 | ( 3.0, 1.0) | * *
The following is the 2 × 2 process grid:
B,D | 0 | -- -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for B:
p,q | 0 | 1 -----|-------------|------------ | ( 3.0, 4.0) | . 0 | (-4.0, 2.0) | . | ( 3.0, 1.0) | . -----|-------------|------------ 1 | (-5.0, 0.0) | . | ( 1.0, 3.0) | .
Output:
Global rectangular 5 × 1 matrix B with block size 2 × 2:
B,D 0 * * 0 | (-8.0,-19.0) | | ( 8.0, 21.0) | | -------------| 1 | (44.0, -8.0) | | (13.0, -7.0) | | -------------| 2 | (19.0, 2.0) | * *
The following is the 2 × 2 process grid:
B,D | 0 | -- -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for B:
p,q | 0 | 1 -----|--------------|------------ | (-8.0,-19.0) | . 0 | ( 8.0, 21.0) | . | (19.0, 2.0) | . -----|--------------|------------ 1 | (44.0, -8.0) | . | (13.0, -7.0) | .