
Installing and Testing the BLACSv1.1 �

R. Clint Whaley y

May 5, 1997

Contents

1 Introduction 1

2 Installation 1

2.1 Directory Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

2.2 Downloading the �les : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2.3 Unpacking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.4 Editing Bmake.inc : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.4.1 Bmake's Section 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.4.2 Bmake's Section 2: All versions : : : : : : : : : : : : : : : : : : : : : 4

2.4.3 Bmake's Section 2: PVM speci�c issues : : : : : : : : : : : : : : : : 5

2.4.4 Bmake's Section 2: MPI speci�c issues : : : : : : : : : : : : : : : : : 5

2.4.5 Bmake's Section 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.5 Installation help: the INSTALL directory : : : : : : : : : : : : : : : : : : : 6

2.5.1 MPI speci�c routines : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.6 Compiling the BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.6.1 Explanation of the �les : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.6.2 Compiling the BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.7 Compiling the BLACS tester : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.7.1 Explanation of the �les : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.7.2 Customizing the tester : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.7.3 Compiling the tester : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3 Running the tester 9

3.1 Selecting tests to run : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.2 SDRV tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.3 BSBR tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.4 COMB tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.5 Auxiliary tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

�This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047, and

in part by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U.S. Department

of Energy, under Contract DE-AC05-84OR21400.
yDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edu

i



4 Understanding tester output 15

4.1 General output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.2 Error reports : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5 Conclusions 16

REFERENCES 18

ii



1 Introduction

This report covers the installation and testing of the BLACS [3]. The sections on BLACS

installation will usually apply only to the BLACS obtained from netlib. The BLACS tester,

however, should be run on any version of the BLACS in order to verify that they are working

correctly.

There are now several vendors supporting BLACS implementations on their machines.

With the BLACS being produced by many di�erent groups, it becomes more important

than ever to ensure that all versions are both syntactically and semantically correct. The

BLACS tester has been written to perform at least some of these checks.

This tester calls every standard BLACS routine. Thus a successful link ensures that all

standard routines at least exist in the BLACS implementation being tested. The point to

point, broadcast, and combine routines may be tested as extensively as the user desires using

input �les. The remaining routines are lumped into the \auxiliary" tests. More information

on these various tests are given in the relevant sections.

The outline for installing and testing the BLACS is given below. The following sections

expand on this outline.

1. Download the BLACS, their tester, and the related papers (see Sections 2.2-2.3 for

details).

2. Select a Bmake.inc example from the BLACS/BMAKES directory to serve as your starting

point for a Bmake.inc, and copy it to BLACS/Bmake.inc. For example, if you are

compiling the PVMBLACS on an alpha machine, from the BLACS/ directory you

would type cp BMAKES/Bmake.PVM-ALPHA Bmake.inc . (see Sections 2.1 and 2.4 for

details).

3. Edit this �le to �t your system (see Section 2.4 for details).

4. Compile the BLACS (see Section 2.6 for details).

5. Compile the BLACS tester (see Section 2.7 for details).

6. Test the BLACS (see Section 3 for details).

NOTE

The CMMDBLACS are discussed throughout this document. These are BLACS written

for Thinking Machine's CM-5 machine. It appears that these BLACS are no longer used,

so they do not appear in this release. If you have need of the CMMDBLACS, send mail to

blacs@cs.utk.edu and we may make them available again.

2 Installation

2.1 Directory Structure

By default, the following structure is assumed for the BLACS and their tester:

1



BLACS

INSTALL BMAKES LIBSRC TESTING

CMMD MPI MPL NX PVM EXEEXE

If you have downloaded only the tester, you will receive the BLACS/BMAKES, BLACS/INSTALL,

and BLACS/TESTING directories. If you download only the BLACS, you will receive the

BLACS/BMAKES, BLACS/INSTALL, BLACS/SRC and BLACS/LIB directories. If both are down-

loaded, the top level directory tree will be complete.

The BLACS/BMAKES directory contains several example Bmake.inc �les, which may be of

help con�guring the make�les to your system. Bmake.inc is included by all BLACS make-

�les; more details about this �le are given in Section 2.4. Having an example Bmake.inc

does not mean you can avoid examining the Bmake.inc. For instance, if you are using PVM

on a HP machine, you can copy BLACS/BMAKES/Bmake.PVM-HPPA to BLACS/Bmake.inc and

have most of the work done for you. However, you may still need to modify the Bmake.inc

to adapt it to your system and needs; for instance you may have compiled your BLACS at

a di�erent location than is standard. Conversely, the lack of an example Bmake.inc in no

way implies that the BLACS will not run on your system.

The BLACS/INSTALL directory contains several small programs which are helpful when

the BLACS are being installed. They are of particular help in con�guring the Bmake.inc

�le. See section 2.5 for details.

The SRC directory contains the BLACS source codes. The subdirectories under SRC

indicate the various message passing libraries upon which the BLACS are presently sup-

ported. CMMD is the message passing library for Thinking Machine's CM-5, MPL runs on

IBM's SP series, and NX runs on the Intel family. PVM [5] and MPI [4] run across a wide

variety of UNIX and supercomputer platforms.

The BLACS libraries will be built into BLACS/LIB.

The BLACS/TESTING directory contains the tester and its related �les. On all systems

except PVM, the executable will be compiled into the BLACS/TESTING/EXE directory. On

PVM, the executable defaults to $(HOME)/pvm3/bin/<PLAT>. The BLACS/TESTING direc-

tory also includes sample input �les for the tester.

2.2 Downloading the �les

The BLACS �les which can be downloaded are:

2



FILE Contents

blacstester.tar.gz The BLACS tester

cmmdblacs.tar.gz BLACS for Thinking Machine's CM-5

mplblacs.tar.gz BLACS for IBM's SP series

nxblacs.tar.gz BLACS for Intel's ipsc2, i860, delta and paragon

pvmblacs.tar.gz BLACS for PVM

mpiblacs.tar.gz alpha version of the BLACS for MPI

blacs ug.ps The BLACS user's guide

blacs install.ps This manual

mpiblacs issues.ps Discussion of some of the outstanding issues in

the alpha release of the MPIBLACS

mpi prop.ps Some discussion of how the issues raised in

mpiblacs issues.ps might be handled by MPI

cblacsqref.ps BLACS C interface quick reference guide

f77blacsqref.ps BLACS f77 interface quick reference guide

If you possess a world wide web browser the BLACS and their tester may be downloaded

by accessing the URL:

http://www.netlib.org/blacs/Blacs.html.

Downloading by anonymous ftp can be accomplished by ftp ftp.netlib.org directory

blacs/.

2.3 Unpacking

The tar �les for the tester and the BLACS will create their portions of the previously

discussed directory tree. They create a directory BLACS in the directory where they are

unpacked. Subsequent unpacks should be performed in this same directory (i.e., above the

BLACS directory).

The unpacking of the compressed tar �le may be accomplished by gunzip -c FILE |

tar xvf -. Note that gnu tar was used to create these tar �les. We have reports that

SUN4's tar may issue a error message when untarring, but have no reports of this actually

causing problems.

2.4 Editing Bmake.inc

The �rst step is to modify the BLACS make include �le Bmake.inc to match your system.

This �le sets up various macros needed for make and the BLACS. Bmake.inc is roughly split

into three sections. Bmake's section 1 de�nes the macros necessary to �nd/name the various

libraries and executables. Bmake's section 2 sets up internals in the BLACS, allowing the

user to perform �ne-tuning for a platform, change how the BLACS behave, etc. Bmake's

section 3 de�nes macros dealing with compilers, linker/loaders, etc.

The directory BLACS/BMAKES contains examples of Bmake.inc's for various systems.

This, together with the internal comments and help from the INSTALL directory, should

enable the user to create a usable BLACS/Bmake.inc for his system. The format for the

names of the example Bmake.inc �les is:

3



Bmake.<COMMLIB>-<PLAT>, where <COMMLIB> indicates the communication library, which

will be one of CMMD, MPI, MPL, NX, and PVM. PLAT represents the platform or architecture

where the message passing library will run. Examples include I860 (Intel i860), SUN4,

HPPA, etc. So, if you wish to run the MPIBLACS on an IBM SP2, you would choose the

�le BLACS/BMAKES/Bmake.MPI-SP2 as your starting point for a BLACS/Bmake.inc.

2.4.1 Bmake's Section 1

In Bmake's section 1 we declare where our libraries are, where the executables should be

placed, etc. The use of most of these macros should be apparent from reading the comments.

We will briey mention here some of the more obtuse macros.

The �rst of these is BLACSDBGLVL. This macro controls the debug level the BLACS are

compiled with. At present, the BLACS possess only two levels of debug: 0 and 1. The

example Bmake.inc �les default to debug level 0. At this level, almost no error checking

is done by the BLACS. Incorrect parameters will as a rule not be caught, and will often

generate non-deterministic behavior. This level of debug is most useful once a code is in

production mode with all bugs ironed out, where performance is the main issue.

Until all of the user's code has been thoroughly tested, it is recommended that he compile

and link to the level 1 debug BLACS. This level of debug is non-intrusive performance-wise:

in the main no o�-process access of debug information is required. The main bene�t of this

mode is better parameter checking, which we have found to be very useful when developing

code.

2.4.2 Bmake's Section 2: All versions

Bmake's section 2 sets C preprocessor values for the BLACS. If the make�le is not used,

these options may also be varied by editing the �le Bconfig.h. Many of these options are

COMMLIB dependent, and are thus discussed below.

SYSINC The �rst standard entry in Bmake's section 2 is SYSINC. This variable sets up

the search path for system speci�c include �les. For example, this will tell the compiler

where to �nd mpi.h for the MPIBLACS.

INTFACE Indicates what namespace interface is required to have Fortran77 call a C

routine. If you are unsure of how to set this variable, run the routine xintface as described

in section 2.5.

DEFBSTOP, DEFCOMBTOP These macros allow the user to vary what topology

the BLACS default topology (TOP = ' ') actually calls when the user does a broadcast

(DEFBSTOP should be set) or a combine (DEFCOMBTOP should be set). Usually the defaults

built into the BLACS will be �ne. An example of when the user would �nd these macros

useful can be found in the MPIBLACS. The space topology will call MPI's built-in broadcast

function. On some systems, with some implementations of MPI, this can be less e�cient

than, for instance, using TOP = '1'. If the user has determined this, he could set, for

instance, DEFBSTOP = -DDefBSTop="'1'".

4



2.4.3 Bmake's Section 2: PVM speci�c issues

CATCHOUT Users may be confused by this option. PVM allows the user to have

program output sent to the standard out of the spawning process, or to have the output go

to the �le /tmp/pvml.<userid>. By default the BLACS send the output to the standard

out of the spawning process. If the user speci�es CATCHOUT = -DBLACSNoCatchout, the

BLACS instead send the output to the /tmp �les.

Sending processes' output to the standard out of the spawning process, requires that

the spawning process service the messages containing the printing information. This may

not be possible in some error conditions, making it necessary to use the /tmp �les to see all

of the messages.

2.4.4 Bmake's Section 2: MPI speci�c issues

Please note that all example MPI Bmake.inc �les set these MPI-speci�c ags to the values

used by MPICH[1, 2]. This is simply because this is the version of MPI that the BLACS

have been most widely tested on.

SENDIS If MPI Send is locally-blocking on your system (see [3] for details on blocking),

you may increase the e�ciency of your BLACS by setting this macro to -DSndIsLocBlk. If

this macro is left blank, the BLACS assume MPI Send is globally-blocking, and bu�ering

combined with non-blocking sends will be used to make the BLACS point to point send

locally-blocking.

BUFF By default the BLACS use MPI's datatype support for sending/receiving of non-

contiguous messages. On some MPI implementations, this can result in ine�cient code,

especially when broadcasting or combining using a topology other than the default. In

particular, on those systems where datatypes are supported by bu�ering rather than sending

the non-contiguous message, this may be ine�cient. You can tell the BLACS to do their

own packing by setting BUFF = -DNoMpiBuff.

TRANSCOMM As discussed in [6] the BLACS will need to translate between Fortran77

and C communicators. In particular, if the BLACS are internally using the C interface to

MPI, and the user calls BLACS GRIDMAP or BLACS GRIDINIT from Fortran77, or if these

routines are called from C, and the BLACS are internally calling the Fortran77 interface,

the passed in MPI communicator will need to be translated to the other language.

If this macro is left blank, the BLACS do this translation by translating all ranks to

MPI COMM WORLD, and thus forming an identical context in the other language (it is assumed

that MPI COMM WORLD is the same in both languages). This is, in general, an unsatifying

solution, as it causes all processes to block on each call to grid formation where translation

must occur. This problem is discussed in [6].

This translation can be made more e�cient if the user knows something about his

system. If the C and Fortran77 contexts are the same, the BLACS can be told no translation

need be done by setting TRANSCOMM = -DCSameF77.

If you are using MPICH or one of its close derivatives, the BLACS should be able to use

MPICH internals to do the translation. To signal this, set TRANSCOMM = -DUseMpich. If

5



your system's pointers are longer than its integers, you'll need to set MPICH's variable in-

dicating this. We would then have TRANSCOMM = -DUseMpich -DPOINTER 64 BITS=1. This

variable is set in the MPICH installation. If you don't have access to your MPICH in-

stallation, run the routine xtranscomm as described in Section 2.5 to determine whether

POINTER 64 BITS=1 should be set or not.

WHATMPI Almost all MPI calls in the BLACS utilize macros so that at compile time

the user can select whether the BLACS internally call the Fortran77 interface to MPI, or the

C interface to MPI. Some MPI calls (mainly those used to translate a communicator from

one interface to another) explicitly call one interface or another, and are thus una�ected by

changing this macro. Generally, it will su�ce to leave this macro blank, leaving the BLACS

to choose which to use, unless the user has some strong reason to prefer one interface to

another.

SYSERRORS Some incorrect MPI implementations cannot handle zero byte data types.

If this is the case with your MPI library, set SYSERRORS = -DZeroByteTypeBug. If you are

unsure about how to set this macro, run the routines xtc CsameF77 and xtc UseMpich as

described in Section 2.5.

2.4.5 Bmake's Section 3

Bmake's section 3 of Bmake.inc is probably the most straightforward. Here we specify

what compilers, linkers, etc., the BLACS and their tester should use for compilation. The

comments in this section of Bmake should be su�cient for the user to make any necessary

modi�cations.

2.5 Installation help: the INSTALL directory

This directory contains several small routines which should help a user in installing the

BLACS. All of these routines should be compiled and ran on the platform for which the

BLACS are being installed (for instance, if the user is running the MPIBLACS on top of

MPICH, he would use mpirun to execute these routines). Note that the user should set

up sections 1 and 3 of Bmake.inc before compiling these routines. On all systems except

PVM, the executables for these routines will default to the BLACS/INSTALL/EXE directory.

On PVM, they will by default be placed in $(HOME)/pvm3/bin/<PLAT>.

size.f This routine can be compiled by make xsize. The resulting executable will tell the

user the correct settings for the size variables in btprim PVM.f's btsizeof routine. This

routine can be run with any BLACS, but is generally only needed for the PVMBLACS.

Fintface.f Cintface.c These routines can be compiled by make xintface. The resulting

executable will give the proper setting for Bmake.inc's INTFACE macro. This routine can

be run with any BLACS.

6



2.5.1 MPI speci�c routines

syserrors.c This routine can be compiled by make xsyserrors. If a run of the resulting

executable completes, SYSERRORS should be left blank. Otherwise, the user should set it to

-DZeroByteTypeBug.

tc fCsameF77.f tc cCsameF77.c These routines can be compiled by make xtc CsameF77.

The resulting executable will indicate whether it is OK to set TRANSCOMM to -DCsameF77.

If it is not, check if your MPI has the MPICH translation routines by running xtc UseMpich.

tc UseMpich.c This routine can be compiled by make xtc UseMpich. Compile and run

xtc CsameF77 �rst. If it does not indicate it is safe to set TRANSCOMM to -DCsameF77,

compile and run this routine. If the link fails, or if the routine fails to complete, leave

TRANSCOMM blank.

cmpi sane.c This routine can be compiled by make xcmpi sane. It calls the C interface

to MPI. Many BLACS questions really turn out to be MPI questions. This is an extremely

simple MPI routine which allows the user to verify the the most basic MPI usage is working

on his platform. When the user is unable to get the BLACS tester to even start running

under his MPI, it is advisable to run this routine and verify that MPI is working, and that

the user is issuing the correct command to run MPI on his platform. This routine has

a cpp macro WASTE SIZE which can be increased/decreased to give the program arbitrary

memory usage (memory usage can be important in determining whether or not apawning

of processes succeeds).

fmpi sane.f This routine can be compiled by make xfmpi sane. It calls the Fortran77 in-

terface toMPI, and exists to do the same checks for the Fortran77 interface that cmpi sane.c

provides for the C interface. It has a parameter for varying memory usage as well, called

WASTESZ.

2.6 Compiling the BLACS

2.6.1 Explanation of the �les

All BLACS/SRC/<COMMLIB> directories have a subdirectory called INTERNAL. Routines in this

directory are internal to the BLACS, and are thus not designed to be called by the user

directly. Routines in the BLACS/SRC/<COMMLIB> directory are user-callable routines, and

thus have both C and Fortran77 interfaces. Note that all standard non-communication

routines have blacs pre�xed to their names. This distinguishes them from the service

routines provided by the library but not guaranteed by the standard, such as dcputime00

and kbsid.

The MPIBLACS has a further standardization of naming schemes. All BLACS internal

routines are pre�xed by BI , as are all global variables. This standardization is provided to

help minimize name-space conicts with the user's libraries. We anticipate that the next

release of the BLACS will extend this idea to all BLACS versions.

7



2.6.2 Compiling the BLACS

Make sure you have the correct Bmake.inc for your platform. To compile the BLACS, sim-

ply go to the BLACS/ directory, and type make <COMMLIB>. For instance, make pvm com-

piles the PVMBLACS, make mpi compiles the MPIBLACS, etc. To remove the object �les

after compilation, simply type make <COMMLIB> what=clean, eg., make mpi what=clean.

NOTE: when the BLACS are are archived into library format, the archiver will probably

report that it is truncating some long �le names. This is not an error, and should not cause

any problems.

2.7 Compiling the BLACS tester

2.7.1 Explanation of the �les

If you do a directory listing in BLACS/TESTING, you will �nd the following �les:

� blacstest.f This �le contains most system-independent code for the BLACS tester.

� tools.f Some tool routines used by the tester. All of these routines come from

LAPACK. They may also be found in ScaLAPACK's TOOLS directory.

� btprim CMMD.f This �le provides blacstest.f with the system primitives it needs

to run on Thinking Machine's CMMD message passing layer. Thus it will be used to

test the BLACS on the CM-5.

� btprim MPI.f This �le provides blacstest.f with the system primitives it needs to

run on MPI.

� btprim MPL.f This �le provides blacstest.f with the system primitives it needs to

run on IBM's MPL message passing layer. Thus it will be used to test the BLACS on

the SP series.

� btprim NX.f This �le provides blacstest.f with the system primitives it needs to

run on Intel's NX message passing layer. Thus it will be used to test the BLACS on

such machines as Intel's iPSC/2, iPSC/860, Delta, and Paragon.

� btprim PVM.f This �le provides blacstest.f with the system primitives it needs to

run on PVM.

� Makefile The tester's make�le.

2.7.2 Customizing the tester

The primary customization of the tester will involve setting the parameter MEMELTS in

blacstest.f. This parameter controls the number of double precision elements in the

tester's main array. The tester will section this array up as needed for all non-local arrays.

This value must be set large enough to run the largest matrix test, and small enough so that

the tester �ts into memory. Most users will be satis�ed with the supplied default value.

8



For various PVM platforms In order to section the main array, the tester needs to

know the size, in bytes, of each data type. In btprim PVM.f there is a routine called

btsizeof which returns this information. You should make sure the values returned by

this routine are correct for your platform. If you are unsure what values are correct for your

system, run the routine xsize as described in Section 2.5.

For unsupported platforms If the user wishes to run the tester on a platform which is

not presently supported, it will be necessary to create a blacstester primitive �le for that

platform. This should be relatively easy to do by simply substituting calls in one of the

supported primitive �les. The six routines in the primitive �le are straightforward and well

documented enough that it should be easy to write them for the desired message passing

library.

The presently supported tester primitive �les are: btprim CMMD.f, btprim MPI.f,

btprim MPL.f, btprim NX.f, btprim PVM.f, as discussed earlier. Often one of these will

be very close to what you need for a new platform. For instance, the MPL version was

produced by making minor modi�cations to the CMMD �le.

2.7.3 Compiling the tester

The �rst step is to modify the BLACS make include �le Bmake.inc to match your system.

Section 2.4 explains this in detail.

Once this is done, compilation is accomplished by moving into the BLACS/TESTING

directory, and typing make. By default, the a tester is built for both the C and Fortran77

interfaces. Note that the C interface BLACS are called via a series of wrappers with the

same name-space as the Fortran77 interface BLACS. Therefore, if your BLACS implement

either interface as wrappers around the other, you will not be able to test one interface

explicitly, as there would be name-space conicts. The BLACS discussed in this paper

implement each interface seperately, so this is not a problem.

There is also a top level make�le which may be used instead. In the BLACS/ directory,

typing make with no arguments gives help. To compile the tester using this make�le, simply

type make tester. To remove object �les, type make tester what=clean.

3 Running the tester

On all systems except PVM, the tester executable and input �les will default to the

BLACS/TESTING/EXE directory. The name of the executables on such systems will be

x[F,C]btest <COMMLIB>-<PLAT>-DEBUGLEVEL (e.g. xFbtest MPI-SUN4-0), where F indi-

cates the Fortran interface is being called, and C indicates the C interface is being tested. On

PVM, they will by default be placed in $(HOME)/pvm3/bin/<PLAT>, and since the platform

information is encoded in the path, the name format is: x[F,C]btest <COMMLIB>-DEBUGLEVEL

(eg. xCbtest PVM-0). The actual method by which the executable is run varies widely

amongst systems. See your local system guide for details on running parallel programs for

your system. Note that the example input �les provided with the tester require a minimum

of 4 processes to run.

9



3.1 Selecting tests to run

The overall behavior of the tester is controlled by the input �le bt.dat. An example of a

legal bt.dat is:

'Sample BLACS tester run' Comment line

6 device out

'blacstest.out' output fname

'T' Run SDRV?

'T' Run BSBR?

'T' Run COMB?

'T' Run AUX?

5 Number of precisions

'I' 'S' 'D' 'C' 'Z' Values for precision

0 Verbosity level

The �rst line is a comment line, which will be regurgitated by the tester as the �rst line

of output. The second line is the device number to use for output. If the device number is

anything but 0 or 6 (standard error and standard out, for most systems), the tester writes

all output to a �le, whose name is given in line 3.

Lines 4 through 7 indicate whether that form of test should be performed. If the input is

'T', the test is performed. If it is 'F', the tests are not performed. The comments (which are,

of course, optional) in the input �le use some abbreviations found throughout the tester.

These abbreviations fall in line with those used in the BLACS, and so should be familiar

to the user. They are:

� SDRV: Point to point send/receive tests,

� BSBR: Broadcast tests,

� COMB: Combine tests, which are further speci�ed by:

{ AMX: Absolute value element-wise maximization,

{ AMN: Absolute value element-wise minimization,

{ SUM: Element-wise summation.

� AUX: Auxiliary tests, which handle the rest of the BLACS routines.

Line 8 indicates the number of data types to test. There are 5 data types supported by

the BLACS, and they are selected on line 9. The possible values are:

Initial Data type

I Integer

S Single precision real

D Double precision real

C Single precision complex

Z Double precision complex

10



The �nal line indicates the verbosity level. This is an easy way for the user to vary the

amount of output he gets from the tester. At present, there are 3 levels:

0. A message is printed when a class of tests are begun (for instance `INTEGER SDRV

TESTS: BEGIN', meaning integer send/receive tests have started). When the class

is �nished, a message is printed out telling if the tests passed or failed. If there were

failures, the number of failed tests is given.

1. In addition to the output associated with level 0, a header is printed out before each

class of tests. This header indicates which tests will be run during this test class. It

amounts to a printing of the relevant input �le.

2. A message is printed at the beginning and ending of each individual test, as well as

the output done by previous verbosity levels.

Regardless of the verbosity level, errors always result in messages being printed.

3.2 SDRV tests

The �rst class of tests in the BLACS is SDRV. This stands for point to point send and re-

ceive, and corresponds to calls to the BLACS routines2GESD2D/2TRSD2D and2GERV2D/2TRRV2D.

The input �le for this class of tests is sdrv.dat. The user should modify this �le to perform

the speci�c tests he requires. An example is:

5 Number of shapes

'U' 'U' 'L' 'L' 'G' UPLO

'U' 'N' 'U' 'N' 'E' DIAG

3 Number of matrices

1 25 13 M

7 19 32 N

3 25 14 LDASRC

2 25 22 LDADEST

4 Number of src/dest pairs

0 1 3 0 RSRC

0 0 0 2 CSRC

0 1 2 0 RDEST

1 1 0 0 CDEST

3 Number of grids

2 4 1 NPROW

2 1 4 NPCOL

In general, the tests to be run are indicated by blocks in the input �le. The �rst line

of such a block indicates the number of values of a quantity which will be tested, and

subsequent line(s) of the block give the separate values. In the above example, such a block

is lines 1 through 3, which control the shape the matrix will possess.

The total number of tests which will be run can be calculated by multiplying the �rst

lines of each block. In the above input �le, we therefore see there will be 180 tests attempted.

11



If the user speci�es a process coordinate for source or destination which is invalid for a

particular process grid being tested, that test will be skipped.

The values controlled by sdrv.dat are:

� UPLO indicates if the matrix is upper triangular (UPLO = 'U'), lower triangular

(UPLO = 'L'), or general rectangular (UPLO = 'G').

� DIAG speci�es if the diagonal of a triangular matrix needs to be communicated. If

DIAG = 'U' (unit diagonal), the diagonal is not communicated. If the diagonal is to

be communicated, DIAG = 'N' (non-unit diagonal) should be selected. If the matrix

is general rectangular, DIAG will be ignored.

� M M � 0.

The number of rows in the matrix,

� N N � 0.

The number of columns in the matrix,

� LDASRC LDASRC �M .

The leading dimension of the matrix on the source processor.

� LDADEST LDADEST �M .

The leading dimension of the matrix on the destination processor.

� RSRC 0 � RSRC < NPROW .

The process row of the source (the sender) of the message.

� CSRC 0 � CSRC < NPCOL.

The process column of the source (the sender) of the message.

� RDEST 0 � RDEST < NPROW .

The process row of the destination of the message.

� CDEST 0 � CDEST < NPCOL.

The process column of the destination of the message.

� NPROW NPROW � 1.

The number of rows in process grid.

� NPCOL NPCOL � 1.

The number of columns in process grid.

3.3 BSBR tests

The second class of tests in the BLACS is BSBR. This stands for broadcast/send and

broadcast/receive, and corresponds to calls to the BLACS routines 2GEBS2D/2TRBS2D and

2GEBR2D/2TRBR2D. The input �le for this class of tests is bsbr.dat, and an example is:

12



3 Number of scopes

'R' 'C' 'A' Scopes

8 Number of topologies

'I' 'S' 'H' '1' 'd' 'm' '4' ' ' TOP

5 Number of shapes

'G' 'U' 'U' 'L' 'L' UPLO

'E' 'U' 'N' 'U' 'N' DIAG

3 Number of matrices

1 25 13 M

7 19 32 N

3 25 14 LDASRC

2 25 22 LDADEST

4 Number of sources

0 1 3 2 RSRC

0 0 1 1 CSRC

4 Number of grids

2 4 1 4 NPROW

2 1 3 1 NPCOL

Most of these parameters have been explained in Section 3.2. We note the following:

this input �le does not have lines for RDEST and CDEST, because a broadcast means that

everyone in the scope except the source is a destination process. We also add two new

quantities:

� SCOPE The scope of the broadcast:

{ 'R': Process row RSRC participates in broadcast.

{ 'C': Process column CSRC participates in broadcast.

{ 'A': Entire process grid participates in broadcast.

� TOP The BLACS topology to be used in the broadcast.

There are some special case topologies that result in atypical test behavior. TOP =

'M' and TOP = 'T' are topologies which behave di�erently based on calls to BLACS SET.

Therefore, in order to test these topologies, a single \test" is actually a series of tests, which

loops over all relevant calls to BLACS SET.

3.4 COMB tests

The third class of tests in the BLACS is COMB. This stands for combine tests, and cor-

responds to calls to the BLACS routines 2GSUM2D, 2GAMX2D, and 2GAMN2D. The input �le

for this class of tests is comb.dat, and an example is:

3 Number of OPs

'+' '>' '<' Combine operations to perform

3 Number of scopes

'R' 'C' 'A' values for scopes

13



2 Repeatability flag (0=no-rep, 1=rep, 2=both)

2 Coherence flag (0=no-coh, 1=coh, 2=both)

6 Number of topologies

' ' '1' '2' 'H' '3' 'f' TOP

5 Number of matrices

3 1 2 25 13 M

5 1 3 19 32 N

5 1 4 25 14 LDASRC

9 1 5 25 22 LDADEST

4 1 -1 25 22 RCFLAG

4 Number of dests

0 -1 0 2 RDEST

0 -1 1 0 CDEST

4 Number of grids

2 1 3 4 NPROW

2 4 1 1 NPCOL

Again, most of these parameters have been explained in previous sections. Note that

RSRC and CSRC are not supplied; like in the broadcast, they are implied by RDEST,

CDEST, and the scope. The new quantities are:

� OP The combine operation to perform:

{ '+': Test summation combine,

{ '>': Test absolute value maximization combine,

{ '<': Test absolute value minimization combine.

� Repeatability ag The BLACS allow the user to specify whether topologies should

be forced to be repeatable (see [3] for and explanation of repeatability) or not. This

ag may have 3 values:

1. : Each combine test is called with the repeatability ag not set.

2. : Each combine test is called with the repeatability ag set.

3. : Each combine test is two calls, one with the repeatability ag not set, and one

with it set.

� Coherence ag The BLACS allow the user to specify whether topologies should be

forced to be coherent (see [3] for and explanation of coherence) or not. This ag may

have 3 values:

1. : Each combine test is called with the coherence ag not set.

2. : Each combine test is called with the coherence ag set.

3. : Each combine test is two calls, one with the coherence ag not set, and one

with it set.

� RCFLAG This input is ignored for summation tests. For max/min, it is de�ned as

in the BLACS.

14



Note that as in broadcast, TOP = 'T' will result in multiple tests for each \test" reported

in output.

3.5 Auxiliary tests

The �nal series of tests is referred to as the AUX tests. Unlike the other categories, this

group has no input �le. Still, some knowledge about its operation should prove helpful to

the user.

Many of the auxiliary routines are hard to test. In some cases, they cannot be tested

at all. In others, they could only be tested if the test were to produce a hang. For those

routines that we can test to some appreciable degree, the following message pair will be

generated:

RUNNING <test type> TEST

PASSED/FAILED <test type> TEST

For the routines which we are unable to test, we just call them. This makes sure that

the routine exists, and at least has no gross defects. The message pair will then be:

CALL <routine>

DONE <routine>

An example of a routine for which we have no good test is BLACS BARRIER. It should

hold up the execution of all processes within the speci�ed scope, until they have all called

the routine. The only test we have devised for this is to have a given process fail to call the

routine, and make sure that no process exits the BLACS BARRIER call. Since this would

result in the tester hanging when the BLACS being tested are working correctly, we do not

perform the test.

The �nal auxiliary test checks if BLACS ABORT is working correctly. If it is, your

processes will be killed. Since the machine is killed you may not get a message indicating

the test has passed. This is not an error.

In general, it is advised to run the auxiliary tests only once for a particular number of

processors. This avoids having the tester kill the machine each run. Since the auxiliary tests

do not base their tests upon an input �le, no new insight is gained by additional testing

runs.

4 Understanding tester output

Please note that this section deals with the output generated by the SDRV, BSBR, and

COMB tests. AUX test output has been discussed in the previous section.

4.1 General output

At least two lines of output will be printed for each class of tests. Upon starting the class

of tests, the following message is always generated:

<DATA TYPE> <TEST TYPE> TESTS: BEGIN.

15



When the class of tests are �nished, one of two messages will be printed. If all tests passed,

the following message is generated:

<DATA TYPE> <TEST TYPE> TESTS: ALL XXXXX TESTS PASSED.

If some tests failed or were skipped due to illegal input, the following is printed

<DATA TYPE> <TEST TYPE> TESTS: XXXXX TESTS; XXXX PASSED, XXXX SKIPPED, XXXX FAILED.

At the end of all tests, one of two messages is printed. If all tests passed, the user is so

informed. Otherwise, the message will indicate that there were failures. This should alert

the user he should look more carefully at the preceding output.

If verbosity is increased, additional printing is done, as previously mentioned. If the

maximum verbosity is chosen (VERB=2), a summary line is printed as each individual test

is begun, and then repeated with either 'PASSED' or 'FAILED' upon completion.

4.2 Error reports

There are �ve basic errors which will be reported:

1. Memory overwrite before beginning of matrix.

2. Memory overwrite after end of matrix.

3. Memory overwrite in LDA - M gap.

4. Memory overwrite in complementary triangle.

5. Invalid element in matrix.

The �rst four errors indicate that memory is being overwritten. The matrix is "padded"

so that overwrites in its vicinity can be detected. The LDA - M gap refers to the area in

each column of the matrix, between the last element to be referenced (M), and the column

length of the fortran array (LDA).

The complentary triangle is that section of a trapezoidal matrix which remains un-

touched (above or below the diaginal, depending on UPLO), which distinguishes it from a

rectangular matrix.

All error messages consist of two lines. The �rst identi�es which error has been detected,

and the second indicates what the tester expected to receive, and what it actually found.

5 Conclusions

If you have questions involving the BLACS or the tester, send mail to blacs@cs.utk.edu.

It is highly recommended that you �rst look at the BLACS homepage, which has a trou-

bleshooting section.

If you have found errors in the UT BLACS, send e-mail describing the error to blacs@cs.utk.edu.

Specify the type of machines you ran on, and give the o�ending output. Please also include

the command you used to run the tester. If you are using PVM, please include the contents,

16



if any, of your /tmp/pvml.<uid> �les. Brevity is appreciated, so giving the smallest run

which produces the error is strongly encouraged.

Acknowledgments: The author would like to thank Martin Do and J. Michael Ham-

mond for their help in the production of the BLACS tester.

17



References

[1] Patrick Bridges, Nathan

Doss, William Gropp, Edward Karrels, Ewing Lusk, and Anthony Skjellum. \Users'

Guide to mpich, a Portable Implementation of MPI", 1995. Available via world wide

web from URL = http://www.mcs.anl.gov/mpi/mpich/index.html.

[2] Patrick Bridges, Nathan Doss, William Gropp, Edward Karrels, Ewing Lusk,

and Anthony Skjellum. \Installation Guide to mpich, a Portable Imple-

mentation of MPI", 1995. Available via world wide web from URL =

http://www.mcs.anl.gov/mpi/mpich/index.html.

[3] Jack Dongarra and R. Clint Whaley. \A User's Guide to the BLACS v1.1". Technical

Report UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard . In-

ternational Journal of Supercomputer Applications and High Performance Comput-

ing, 8(3/4), 1994. Special issue on MPI. Also available electronically, the url is

ftp://www.netlib.org/mpi/mpi-report.ps.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press,

1994. The book is available electronically, the url is ftp://www.netlib.org/pvm

3/book/pvm-book.ps.

[6] R. Clint Whaley. \Outstanding Issues in the MPIBLACS", 1995. Available on netlib

from the blacs/ directory.

18


