
LAPACK Working Note 81

Quick Installation Guide for LAPACK on Unix Systems
1

Jack Dongarra and Susan Ostrouchov

Department of Computer Science

University of Tennessee

Knoxville, Tennessee 37996-1301

REVISED: VERSION 2.0, September 30, 1994

Abstract

This working note describes how to install, test, and time version 2.0 of LAPACK, a linear

algebra package for high-performance computers, on a Unix System. Non-Unix installa-

tion instructions and further details of the testing and timing suites are only contained in

LAPACK Working Note 41, and not in this abbreviated version.

1This work was supported by NSF Grant No. ASC-8715728.

1

Contents

1 Introduction : 3

2 Revisions Since the First Public Release : 3

3 File Format : 3

4 Overview of Tape Contents : 4

4.1 LAPACK Routines : 5

4.2 Level 1, 2, and 3 BLAS : 5

4.3 LAPACK Test Routines : 5

4.4 LAPACK Timing Routines : 5

5 Installing LAPACK on a Unix System : 6

5.1 Read the Tape or Untar the File : 6

5.2 Edit the �le LAPACK/make.inc : 6

5.3 Edit the �le LAPACK/Makefile : 7

6 Further Details of the Installation Process : : : : : : : : : : : : : : : : : : : 8

6.1 Test and Install the Machine-Dependent Routines. : : : : : : : : : : 8

6.1.1 Installing LSAME : 8

6.1.2 Installing SLAMCH and DLAMCH : : : : : : : : : : : : : 9

6.1.3 Installing SECOND and DSECND : : : : : : : : : : : : : : 10

6.2 Create the BLAS Library : 11

6.3 Run the BLAS Test Programs : 11

6.4 Create the LAPACK Library : 11

6.5 Create the Test Matrix Generator Library : : : : : : : : : : : : : : : 12

6.6 Run the LAPACK Test Programs : : : : : : : : : : : : : : : : : : : 12

6.6.1 Testing the Linear Equations Routines : : : : : : : : : : : 12

6.6.2 Testing the Eigensystem Routines : : : : : : : : : : : : : : 13

6.7 Run the LAPACK Timing Programs : : : : : : : : : : : : : : : : : : 14

6.7.1 Timing the Linear Equations Routines : : : : : : : : : : : 15

6.7.2 Timing the BLAS : 15

6.7.3 Timing the Eigensystem Routines : : : : : : : : : : : : : : 16

6.8 Send the Results to Tennessee : 17

Bibliography : 19

2

1 Introduction

LAPACK is a linear algebra library for high-performance computers. The library in-

cludes Fortran 77 subroutines for the analysis and solution of systems of simultaneous linear

algebraic equations, linear least-squares problems, and matrix eigenvalue problems. Our ap-

proach to achieving high e�ciency is based on the use of a standard set of Basic Linear

Algebra Subprograms (the BLAS), which can be optimized for each computing environ-

ment. By con�ning most of the computational work to the BLAS, the subroutines should

be transportable and e�cient across a wide range of computers.

This working note describes how to install, test, and time this release of LAPACK on a

Unix System.

The instructions for installing, testing, and timing are designed for a person whose

responsibility is the maintenance of a mathematical software library. We assume the installer

has experience in compiling and running Fortran programs and in creating object libraries.

The installation process involves reading the tape or tarring the �le, creating a set of

libraries, and compiling and running the test and timing programs.

Section 3 describes how the �les are organized on the tape or �le, and Section 4 gives

a general overview of the parts of the test package. Step-by-step instructions appear in

Section 5.

For users desiring additional information, please refer to LAPACK Working Note 41.

2 Revisions Since the First Public Release

Since its �rst public release in February, 1992, LAPACK has had several updates, which

have encompassed the introduction of new routines as well as extending the functionality

of existing routines. The �rst update, June 30, 1992, was version 1.0a; the second update,

October 31, 1992, was version 1.0b; the third update, March 31, 1993, was version 1.1;

and �nally, September 30, 1994, version 2.0. All LAPACK routines re
ect the current

version number with the date on the routine indicating when it was last modi�ed. For more

information on revisions please refer to the LAPACK release notes �le on netlib, or the

second edition of the LAPACK Users' Guide.

We plan to have only one or two updates a year, and provide a PRERELEASE directory

on netlib to contain new software that is being considered for inclusion. Users can then pro-

vide input and experimentation with these prerelease routines. The tar �le lapack.tar.z

that is available on netlib is always the most up-to-date.

On-line manpages (tro� �les) for LAPACK driver and computational routines, as well

as most of the BLAS routines, are available via the lapack index on netlib.

3 File Format

The software for LAPACK is distributed in the form of a compressed tar �le (via xnetlib,

anonymous ftp, or the World Wide Web) or a Unix tar tape from NAG (Numerical Al-

gorithms Group, Inc.), which contains the Fortran source for LAPACK, the Basic Linear

Algebra Subprograms (the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing pro-

grams, and the timing programs. Users who wish to have a non-Unix installation should

3

LAPACK

INSTALL

Machine depen-
dent routines

BLAS

SRC
L
L

Level 1 BLAS
Level 2 BLAS
Level 3 BLAS

TESTING
L
L

BLAS2 & 3 test
routines

SRC

LAPACK routines
& auxiliary routines

TESTING
L
L
L
L
L

LIN
L
L

MATGEN
L
L

EIG
L
L

Linear eqn.
test routines

Test matrix
generators

Eigensystem
test routines

TIMING

LIN
L
L

EIG
L
L

Linear eqn.
timing routines

Eigensystem
timing routines

Figure 1: Unix organization of LAPACK

refer to LAPACK Working Note 41, although the overview in section 4 applies to both the

Unix and non-Unix versions.

The software on the tar tape or tar �le is organized in a number of essential directories

as shown in Figure 1. Please note that this �gure does not re
ect everything that is

contained in the LAPACK directory. Input and instructional �les are also located at various

levels. Libraries are created in the LAPACK directory and executable �les are created in

one of the directories BLAS, TESTING, or TIMING. Input �les for the test and timing

programs are also found in these three directories so that testing may be carried out in the

directories LAPACK/BLAS, LAPACK/TESTING, and LAPACK/TIMING. A top-level

make�le in the LAPACK directory is provided to perform the entire installation procedure.

4 Overview of Tape Contents

Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION,

COMPLEX, and COMPLEX*16. The �rst three versions (REAL, DOUBLE PRECISION,

and COMPLEX) are written in standard Fortran 77 and are completely portable; the

COMPLEX*16 version is provided for those compilers which allow this data type. For

convenience, we often refer to routines by their single precision names; the leading `S' can

be replaced by a `D' for double precision, a `C' for complex, or a `Z' for complex*16. For

LAPACK use and testing you must decide which version(s) of the package you intend to

install at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLE

PRECISION and COMPLEX*16 on an IBM computer).

4

4.1 LAPACK Routines

There are three classes of LAPACK routines:

� driver routines solve a complete problem, such as solving a system of linear equations

or computing the eigenvalues of a real symmetric matrix. Users are encouraged to use

a driver routine if there is one that meets their requirements. The driver routines are

listed in LAPACK Working Note 41 [3] and the LAPACK Users' Guide [1].

� computational routines, also called simply LAPACK routines, perform a distinct

computational task, such as computing the LU decomposition of an m-by-n matrix

or �nding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using

the QR algorithm. The LAPACK routines are listed in LAPACK Working Note 41 [3]

and the LAPACK Users' Guide [1].

� auxiliary routines are all the other subroutines called by the driver routines and

computational routines. The auxiliary routines are listed in LAPACK Working Note

41 [3] and the LAPACK Users' Guide [1].

4.2 Level 1, 2, and 3 BLAS

The BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,

matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1, 2,

and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in the

BLAS. Therefore, the key to getting good performance from LAPACK lies in having an

e�cient version of the BLAS optimized for your particular machine. If you have access to

a library containing optimized versions of some or all of the BLAS, you should certainly

use it (but be sure to run the BLAS test programs). If an optimized library of the BLAS is

not available, Fortran source code for the Level 1, 2, and 3 BLAS is provided on the tape.

Users should not expect too much from the Fortran BLAS; these versions were written to

de�ne the basic operations and do not employ the standard tricks for optimizing Fortran

code.

The formal de�nitions of the Level 1, 2, and 3 BLAS are in [10], [8], and [6]. Copies of

the BLAS Quick Reference card are available from the authors or netlib.

4.3 LAPACK Test Routines

This release contains two distinct test programs for LAPACK routines in each data

type. One test program tests the routines for solving linear equations and linear least

squares problems, and the other tests routines for the matrix eigenvalue problem. The

routines for generating test matrices are used by both test programs and are compiled into

a library for use by both test programs.

4.4 LAPACK Timing Routines

This release also contains two distinct timing programs for the LAPACK routines in

each data type. The linear equation timing program gathers performance data in mega
ops

on the factor, solve, and inverse routines for solving linear systems, the routines to generate

5

or apply an orthogonal matrix given as a sequence of elementary transformations, and the

reductions to bidiagonal, tridiagonal, or Hessenberg form for eigenvalue computations. The

operation counts used in computing the mega
op rates are computed from a formula; see

LAPACKWorking Note 41 [3]. The eigenvalue timing program is used with the eigensystem

routines and returns the execution time, number of
oating point operations, and mega
op

rate for each of the requested subroutines. In this program, the number of operations is

computed while the code is executing using special instrumented versions of the LAPACK

subroutines.

5 Installing LAPACK on a Unix System

Installing, testing, and timing the Unix version of LAPACK involves the following steps:

1. Read the tape or uncompress and tar the �le.

2. Edit the �le LAPACK/make.inc.

3. Edit the �le LAPACK/Makefile and type make.

5.1 Read the Tape or Untar the File

If you received a tar tape of LAPACK, type one of the following commands to unload

the tape (the device name may be di�erent at your site):

tar xvf /dev/rst0 (cartridge tape), or

tar xvf /dev/rmt8 (9-track tape)

Alternatively, if you received a tar �le of LAPACK via xnetlib, anonymous ftp, or the

World Wide Web, enter the following two commands to untar the �le:

uncompress �le (where �le is the name of the compressed tar file)

tar xvf �le (where �le is the name of the tar file)

This will create a top-level directory called LAPACK, which requires approximately 33 Mbytes

of disk space. The total space requirements including the object �les and executables is

approximately 80 Mbytes for all four data types.

5.2 Edit the �le LAPACK/make.inc

Before the libraries can be built, or the testing and timing programs run, you must de�ne

all machine-speci�c parameters for the architecture to which you are installing LAPACK.

All machine-speci�c parameters are contained in the �le LAPACK/make.inc. First, you will

need to modify the PLAT de�nition, which is appended to all library names, to specify the

architecture to which you are installing LAPACK. This features avoids confusion in library

names when you are installing LAPACK on more than one architecture. Next, you will

need to modify FORTRAN, OPTS, NOOPT, LOADER, LOADOPTS, ARCH, ARCHFLAGS, and RANLIB

to specify the compiler, compiler options, loader, loader options, archiver, archiver options,

6

and ranlib for your machine. If your architecture does not require ranlib to be run after

each archive command (as is the case with CRAY computers running UNICOS, or Hewlett

Packard computers running HP-UX), set ranlib=echo. And �nally, you must modify the

BLASLIB de�nition to specify the BLAS library to which you will be linking. If an optimized

version of the BLAS is available on your machine, you are highly recommended to link to

that library. Otherwise, by default, BLASLIB is set to the Fortran 77 version.

5.3 Edit the �le LAPACK/Makefile

This Makefile can be modi�ed to perform as much of the installation process as the user

desires. Ideally, this is the ONLY make�le the user must modify. However, modi�cation

of lower-level make�les may be necessary if a speci�c routine needs to be compiled with a

di�erent level of optimization.

First, edit the de�nitions of blaslib, lapacklib, tmglib, testing, and timing in the

�le LAPACK/Makefile to specify the data types desired. For example, if you only wish to

compile the single precision real version of the LAPACK library, you would modify the

lapacklib de�nition to be:

lapacklib:

(cd SRC; $(MAKE) single)

Likewise, you could specify double, complex, or complex16 to build the double pre-

cision real, single precision complex, or double precision complex libraries, respectively. By

default, the presence of no arguments following the make command will result in the build-

ing of all four data types. The make command can be run more than once to add another

data type to the library if necessary.

If you are installing LAPACK on a Silicon Graphics machine, you must modify the

respective de�nitions of testing and timing to be

testing:

(cd TESTING; $(MAKE) -f Makefile.sgi)

and

timing:

(cd TIMING; $(MAKE) -f Makefile.sgi)

Next, if you will be using a locally available BLAS library, you will need to remove

blaslib from the lib de�nition. And �nally, if you do not wish to build all of the libraries

individually and likewise run all of the testing and timing separately, you can modify the

all de�nition to specify the amount of the installation process that you want performed.

By default, the all de�nition is set to

all: install lib blas_testing testing timing blas_timing

which will perform all phases of the installation process { testing of machine-dependent

routines, building the libraries, BLAS testing, LAPACK testing, LAPACK timing, and

BLAS timing.

7

The entire installation process will then be performed by typing make.

Questions and/or comments can be directed to the authors as described in Section 6.8.

If test failures occur, please refer to the appropriate subsection in Section 6.

If disk space is limited, I would suggest building each data type separately and/or delet-

ing all object �les after building the libraries. Likewise, all testing and timing executables

can be deleted after the testing and timing process is completed. The removal of all object

�les and executables can be accomplished by the following:

cd LAPACK

make clean

6 Further Details of the Installation Process

Alternatively, you can choose to run each of the phases of the installation process separately.

The following sections give details on how this may be achieved.

6.1 Test and Install the Machine-Dependent Routines.

There are �ve machine-dependent functions in the test and timing package, at least

three of which must be installed. They are

LSAME LOGICAL Test if two characters are the same regardless of case

SLAMCH REAL Determine machine-dependent parameters

DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a �xed starting time

DSECND DOUBLE PRECISION Return time in seconds from a �xed starting time

If you are working only in single precision, you do not need to install DLAMCH and

DSECND, and if you are working only in double precision, you do not need to install

SLAMCH and SECOND.

These �ve subroutines are provided in LAPACK/INSTALL, along with �ve test programs.

To compile the �ve test programs and run the tests, go to LAPACK and type make install.

The test programs are called testlsame, testslamch, testdlamch, testsecond, and

testdsecnd. If you do not wish to run all tests, you will need to modify the install

de�nition in the LAPACK/Makefile to only include the tests you wish to run. Otherwise,

all tests will be performed. The expected results of each test program are described below.

6.1.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.

if A and B are the same regardless of case, or .FALSE. if they are di�erent. For example,

the expression

LSAME(UPLO, 'U')

is equivalent to

8

(UPLO.EQ.'U').OR.(UPLO.EQ.'u')

The test program in lsametst.f tests all combinations of the same character in upper

and lower case for A and B, and two cases where A and B are di�erent characters.

Run the test program by typing testlsame. If LSAME works correctly, the only message

you should see after the execution of testlsame is

ASCII character set

Tests completed

The �le lsame.f is automatically copied to LAPACK/BLAS/SRC/ and LAPACK/SRC/. The

function LSAME is needed by both the BLAS and LAPACK, so it is safer to have it in

both libraries as long as this does not cause trouble in the link phase when both libraries

are used.

6.1.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that

indicates the machine parameter to be returned. The test program in slamchtst.f simply

prints out the di�erent values computed by SLAMCH, so you need to know something

about what the values should be. For example, the output of the test program executable

testslamch for SLAMCH on a Sun SPARCstation is

Epsilon = 5.96046E-08

Safe minimum = 1.17549E-38

Base = 2.00000

Precision = 1.19209E-07

Number of digits in mantissa = 24.0000

Rounding mode = 1.00000

Minimum exponent = -125.000

Underflow threshold = 1.17549E-38

Largest exponent = 128.000

Overflow threshold = 3.40282E+38

Reciprocal of safe minimum = 8.50706E+37

On a Cray machine, the safe minimum under
ows its output representation and the over
ow

threshold over
ows its output representation, so the safe minimum is printed as 0.00000

and over
ow is printed as R. This is normal. If you would prefer to print a representable

number, you can modify the test program to print SFMIN*100. and RMAX/100. for the

safe minimum and over
ow thresholds.

Likewise, the test executable testdlamch is run for DLAMCH.

The �les slamch.f and dlamch.f are automatically copied to to LAPACK/SRC/. If both

tests were successful, go to Section 6.1.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own

version of this function. The following options are used in LAPACK and must be set:

`B': Base of the machine

9

`E': Epsilon (relative machine precision)

`O': Over
ow threshold

`P': Precision = Epsilon*Base

`S': Safe minimum (often same as under
ow threshold)

`U': Under
ow threshold

Some people may be familiar with R1MACH (D1MACH), a primitive routine for set-

ting machine parameters in which the user must comment out the appropriate assignment

statements for the target machine. If a version of R1MACH is on hand, the assignments in

SLAMCH can be made to refer to R1MACH using the correspondence

SLAMCH(`U') = R1MACH(1)

SLAMCH(`O') = R1MACH(2)

SLAMCH(`E') = R1MACH(3)

SLAMCH(`B') = R1MACH(5)

The safe minimum returned by SLAMCH('S') is initially set to the under
ow value, but

if 1=(over
ow) � (under
ow) it is recomputed as (1=(over
ow)) � (1 + "), where " is the

machine precision.

BE AWARE that the initial call to SLAMCH or DLAMCH is expensive. We suggest

that installers run it once, save the results, and hard-code the constants in the version they

put in their library.

6.1.3 Installing SECOND and DSECND

Both the timing routines and the test routines call SECOND (DSECND), a real function

with no arguments that returns the time in seconds from some �xed starting time. Our

version of this routine returns only \user time", and not \user time + system time". The

version of SECOND in second.f calls ETIME, a Fortran library routine available on some

computer systems. If ETIME is not available or a better local timing function exists, you

will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in secondtst.f performs a million operations using 5000 iterations of

the SAXPY operation y := y+�x on a vector of length 100. The total time and mega
ops

for this test is reported, then the operation is repeated including a call to SECOND on each

of the 5000 iterations to determine the overhead due to calling SECOND. The test program

executable is called testsecond (or testdsecnd). There is no single right answer, but the

times in seconds should be positive and the mega
op ratios should be appropriate for your

machine. The �les second.f and dsecnd.f are automatically copied to LAPACK/SRC/ for

inclusion in the LAPACK library.

10

6.2 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.

In this case you can go directly to Section 6.3 to make the BLAS test programs. You

may already have a library containing some of the BLAS, but not all (Level 1 and 2, but

not Level 3, for example). If so, you should use your local version of the BLAS wherever

possible.

a) Go to LAPACK and edit the de�nition of blaslib in the �le Makefile to specify the

data types desired, as in the example in Section 5.3.

If you already have some of the BLAS, you will need to edit the �le LAPACK/BLAS/SRC/Makefile

to comment out the lines de�ning the BLAS you have.

b) Type make blaslib. The make command can be run more than once to add another

data type to the library if necessary.

The BLAS library is created in LAPACK/blas PLAT.a, where PLAT is the user-de�ned archi-

tecture su�x speci�ed in the �le LAPACK/make.inc.

6.3 Run the BLAS Test Programs

Test programs for the Level 1, 2, and 3 BLAS are in the directory LAPACK/BLAS/TESTING.

To compile and run the Level 1, 2, and 3 BLAS test programs, go to LAPACK and

type make blas testing. The executable �les are called xblat s, xblat d, xblat c, and

xblat z, where the (underscore) is replaced by 1, 2, or 3, depending upon the level of

BLAS that it is testing. All executable and output �les are created in LAPACK/BLAS/. For

the Level 1 BLAS tests, the output �le names are sblat1.out, dblat1.out, cblat1.out,

and zblat1.out. For the Level 2 and 3 BLAS, the name of the output �le is indicated on

the �rst line of the input �le and is currently de�ned to be SBLAT2.SUMM for the Level 2

REAL version, and SBLAT3.SUMM for the Level 3 REAL version, with similar names for the

other data types.

If the tests using the supplied data �les were completed successfully, consider whether

the tests were su�ciently thorough. For example, on a machine with vector registers, at

least one value ofN greater than the length of the vector registers should be used; otherwise,

important parts of the compiled code may not be exercised by the tests. If the tests were

not successful, either because the program did not �nish or the test ratios did not pass

the threshold, you will probably have to �nd and correct the problem before continuing. If

you have been testing a system-speci�c BLAS library, try using the Fortran BLAS for the

routines that did not pass the tests. For more details on the BLAS test programs, see [9]

and [7].

6.4 Create the LAPACK Library

a) Go to the directory LAPACK and edit the de�nition of lapacklib in the �le Makefile

to specify the data types desired, as in the example in Section 5.3.

b) Type make lapacklib. The make command can be run more than once to add

another data type to the library if necessary.

11

The LAPACK library is created in LAPACK/lapack PLAT.a, where PLAT is the user-de�ned

architecture su�x speci�ed in the �le LAPACK/make.inc.

6.5 Create the Test Matrix Generator Library

a) Go to the directory LAPACK and edit the de�nition of tmglib in the �le Makefile to

specify the data types desired, as in the example in Section 5.3.

b) Type make tmglib. The make command can be run more than once to add another

data type to the library if necessary.

The test matrix generator library is created in LAPACK/tmglib PLAT.a, where PLAT is the

user-de�ned architecture su�x speci�ed in the �le LAPACK/make.inc.

6.6 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for

the linear equation routines and one for the eigensystem routines. In each data type, there

is one input �le for testing the linear equation routines and seventeen input �les for testing

the eigenvalue routines. The input �les reside in LAPACK/TESTING. For more information

on the test programs and how to modify the input �les, please refer to LAPACK Working

Note 41 [3].

If you do not wish to run each of the tests individually, you can go to LAPACK, edit the

de�nition testing in the �le Makefile to specify the data types desired, and type make

testing. This will compile and run the tests as described in sections 6.6.1 and 6.6.2.

If you are installing LAPACK on a Silicon Graphics machine, you must modify the

de�nition of testing to be

testing:

(cd TESTING; $(MAKE) -f Makefile.sgi)

6.6.1 Testing the Linear Equations Routines

a) Go to LAPACK/TESTING/LIN and type make followed by the data types desired. The

executable �les are called xlintsts, xlintstc, xlintstd, or xlintstz and are

created in LAPACK/TESTING.

b) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,

the command is

xlintsts < stest.in > stest.out

The tests using xlintstd, xlintstc, and xlintstz are similar with the leading `s'

in the input and output �le names replaced by `d', `c', or `z'.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

12

6.6.2 Testing the Eigensystem Routines

a) Go to LAPACK/TESTING/EIG and type make followed by the data types desired. The

executable �les are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and are

created in LAPACK/TESTING.

b) Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigen-

system routines use seventeen separate input �les for testing the nonsymmetric eigen-

value problem, the symmetric eigenvalue problem, the banded symmetric eigenvalue

problem, the generalized symmetric eigenvalue problem, the generalized nonsymmet-

ric eigenvalue problem, the singular value decomposition, the banded singular value

decomposition, the generalized singular value decomposition, the generalized QR and

RQ factorizations, the generalized linear regression model, and the constrained linear

least squares problem. The tests for the REAL version are as follows:

xeigtsts < nep.in > snep.out

xeigtsts < sep.in > ssep.out

xeigtsts < svd.in > ssvd.out

xeigtsts < sec.in > sec.out

xeigtsts < sed.in > sed.out

xeigtsts < sgg.in > sgg.out

xeigtsts < ssg.in > ssg.out

xeigtsts < ssb.in > ssb.out

xeigtsts < sbb.in > sbb.out

xeigtsts < sbal.in > sbal.out

xeigtsts < sbak.in > sbak.out

xeigtsts < sgbal.in > sgbal.out

xeigtsts < sgbak.in > sgbak.out

xeigtsts < glm.in > sglm.out

xeigtsts < gqr.in > sgqr.out

xeigtsts < gsv.in > sgsv.out

xeigtsts < lse.in > slse.out

The tests using xeigtstc, xeigtstd, and xeigtstz also use the input �les nep.in,

sep.in, svd.in, glm.in, gqr.in, gsv.in, and lse.in, but the leading `s' in the other

input �le names must be changed to `c', `d', or `z'.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

13

6.7 Run the LAPACK Timing Programs

There are two distinct timing programs for LAPACK routines in each data type, one

for the linear equation routines and one for the eigensystem routines. The timing program

for the linear equation routines is also used to time the BLAS. We encourage you to con-

duct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION and

COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input �les are provided, a small set and a large set. The small data sets are

appropriate for a standard workstation or other non-vector machine. The large data sets

are appropriate for supercomputers, vector computers, and high-performance workstations.

We are mainly interested in results from the large data sets, and it is not necessary to run

both the large and small sets. The values of N in the large data sets are about �ve times

larger than those in the small data set, and the large data sets use additional values for

parameters such as the block size NB and the leading array dimension LDA. Small data

sets are indicated by lower case names, such as stime.in, and large data sets are indicated

by upper case names, such as STIME.in. Except as noted, the leading `s' (or `S') in the

input �le name must be replaced by `d', `c', or `z' (`D', `C', or `Z') for the other data types.

We encourage you to obtain timing results with the large data sets, as this allows us to

compare di�erent machines. If this would take too much time, suggestions for paring back

the large data sets are given in the instructions below. We also encourage you to experiment

with these timing programs and send us any interesting results, such as results for larger

problems or for a wider range of block sizes. The main programs are dimensioned for the

large data sets, so the parameters in the main program may have to be reduced in order

to run the small data sets on a small machine, or increased to run experiments with larger

problems.

The minimum time each subroutine will be timed is set to 0.0 in the large data �les

and to 0.05 in the small data �les, and on many machines this value should be increased.

If the timing interval is not long enough, the time for the subroutine after subtracting the

overhead may be very small or zero, resulting in mega
op rates that are very large or zero.

(To avoid division by zero, the mega
op rate is set to zero if the time is less than or equal to

zero.) The minimum time that should be used depends on the machine and the resolution

of the clock.

For more information on the timing programs and how to modify the input �les, please

refer to LAPACK Working Note 41 [3].

If you do not wish to run each of the timings individually, you can go to LAPACK, edit

the de�nition timing in the �le Makefile to specify the data types desired, and type make

timing. This will compile and run the timings for the linear equation routines and the

eigensystem routines (see Sections 6.7.1 and 6.7.3).

If you are installing LAPACK on a Silicon Graphics machine, you must modify the

de�nition of timing to be

timing:

(cd TIMING; $(MAKE) -f Makefile.sgi)

If you encounter failures in any phase of the timing process, please feel free to contact

the authors as directed in Section 6.8. Tell us the type of machine on which the tests were

14

run, the version of the operating system, the compiler and compiler options that were used,

and details of the BLAS library or libraries that you used. You should also include a copy

of the output �le in which the failure occurs.

Please note that the BLAS timing runs will still need to be run as instructed in 6.7.2.

6.7.1 Timing the Linear Equations Routines

The linear equation timing program is found in LAPACK/TIMING/LIN and the input �les

are in LAPACK/TIMING. Three input �les are provided in each data type for timing the

linear equation routines, one for square matrices, one for band matrices, and one for rect-

angular matrices. The small data sets for the REAL version are stime.in, sband.in, and

stime2.in, respectively, and the large data sets are STIME.in, SBAND.in, and STIME2.in.

a) To make the linear equation timing programs, go to LAPACK/TIMING/LIN and type

make followed by the data types desired, as in the examples in Section 5.3. The

executable �les are called xlintims, xlintimc, xlintimd, and xlintimz and are

created in LAPACK/TIMING.

b) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value, or to

restrict the size of the tests if you are using a computer with performance in between

that of a workstation and that of a supercomputer. The computational requirements

can be cut in half by using only one value of LDA. If it is necessary to also reduce the

matrix sizes or the values of the blocksize, corresponding changes should be made to

the BLAS input �les (see Section 6.7.2).

c) Run the programs for each data type you are using. For the REAL version, the

commands for the small data sets are

xlintims < stime.in > stime.out

xlintims < sband.in > sband.out

xlintims < stime2.in > stime2.out

or the commands for the large data sets are

xlintims < STIME.in > STIME.out

xlintims < SBAND.in > SBAND.out

xlintims < STIME2.in > STIME2.out

Similar commands should be used for the other data types.

6.7.2 Timing the BLAS

The linear equation timing program is also used to time the BLAS. Three input �les

are provided in each data type for timing the Level 2 and 3 BLAS. These input �les time

the BLAS using the matrix shapes encountered in the LAPACK routines, and we will use

the results to analyze the performance of the LAPACK routines. For the REAL version,

15

the small data �les are sblasa.in, sblasb.in, and sblasc.in and the large data �les

are SBLASA.in, SBLASB.in, and SBLASC.in. There are three sets of inputs because there

are three parameters in the Level 3 BLAS, M, N, and K, and in most applications one of

these parameters is small (on the order of the blocksize) while the other two are large (on

the order of the matrix size). In sblasa.in, M and N are large but K is small, while in

sblasb.in the small parameter is M, and in sblasc.in the small parameter is N. The

Level 2 BLAS are timed only in the �rst data set, where K is also used as the bandwidth

for the banded routines.

a) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value. If

you modi�ed the values of N or NB in Section 6.7.1, set M, N, and K accordingly. The

large parameters among M, N, and K should be the same as the matrix sizes used in

timing the linear equation routines, and the small parameter should be the same as

the blocksizes used in timing the linear equation routines. If necessary, the large data

set can be simpli�ed by using only one value of LDA.

b) Run the programs for each data type you are using. For the REAL version, the

commands for the small data sets are

xlintims < sblasa.in > sblasa.out

xlintims < sblasb.in > sblasb.out

xlintims < sblasc.in > sblasc.out

or the commands for the large data sets are

xlintims < SBLASA.in > SBLASA.out

xlintims < SBLASB.in > SBLASB.out

xlintims < SBLASC.in > SBLASC.out

Similar commands should be used for the other data types.

6.7.3 Timing the Eigensystem Routines

The eigensystem timing program is found in LAPACK/TIMING/EIG and the input �les are

in LAPACK/TIMING. Four input �les are provided in each data type for timing the eigensys-

tem routines, one for the generalized nonsymmetric eigenvalue problem, one for the non-

symmetric eigenvalue problem, one for the symmetric and generalized symmetric eigenvalue

problem, and one for the singular value decomposition. For the REAL version, the small

data sets are called sgeptim.in, sneptim.in, sseptim.in, and ssvdtim.in, respectively.

and the large data sets are called SGEPTIM.in, SNEPTIM.in, SSEPTIM.in, and SSVDTIM.in.

Each of the four input �les reads a di�erent set of parameters, and the format of the input

is indicated by a 3-character code on the �rst line.

The timing program for eigenvalue/singular value routines accumulates the operation

count as the routines are executing using special instrumented versions of the LAPACK

routines. The �rst step in compiling the timing program is therefore to make a library of

the instrumented routines.

16

a) To make a library of the instrumented LAPACK routines, �rst go to

LAPACK/TIMING/EIG/EIGSRC and type make followed by the data types desired, as

in the examples of Section 5.3. The library of instrumented code is created in

LAPACK/TIMING/EIG/eigsrc PLAT.a, where PLAT is the user-de�ned architecture suf-

�x speci�ed in the �le LAPACK/make.inc.

b) To make the eigensystem timing programs, go to LAPACK/TIMING/EIG and type make

followed by the data types desired, as in the examples of Section 5.3. The executable

�les are called xeigtims, xeigtimc, xeigtimd, and xeigtimz and are created in

LAPACK/TIMING.

c) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value,

or to restrict the number of tests if you are using a computer with performance in

between that of a workstation and that of a supercomputer. Instead of decreasing

the matrix dimensions to reduce the time, it would be better to reduce the number of

matrix types to be timed, since the performance varies more with the matrix size than

with the type. For example, for the nonsymmetric eigenvalue routines, you could use

only one matrix of type 4 instead of four matrices of types 1, 3, 4, and 6. Refer to

LAPACK Working Note 41 [3] for further details.

d) Run the programs for each data type you are using. For the REAL version, the

commands for the small data sets are

xeigtims < sgeptim.in > sgeptim.out

xeigtims < sneptim.in > sneptim.out

xeigtims < sseptim.in > sseptim.out

xeigtims < ssvdtim.in > ssvdtim.out

or the commands for the large data sets are

xeigtims < SGEPTIM.in > SGEPTIM.out

xeigtims < SNEPTIM.in > SNEPTIM.out

xeigtims < SSEPTIM.in > SSEPTIM.out

xeigtims < SSVDTIM.in > SSVDTIM.out

Similar commands should be used for the other data types.

6.8 Send the Results to Tennessee

Congratulations! You have now �nished installing, testing, and timing LAPACK. If

you encountered failures in any phase of the testing or timing process, please consult our

release notes �le on netlib (send email to netlib@ornl.gov and in the message type "send

release notes from lapack"). This �le contains machine-dependent installation clues which

hopefully will alleviate your di�culties or at least let you know that other users have

had similar di�culties on that machine. If there is not an entry for your machine or the

suggestions do not �x your problem, please feel free to contact the authors at

17

lapack@cs.utk.edu.

Tell us the type of machine on which the tests were run, the version of the operating

system, the compiler and compiler options that were used, and details of the BLAS library

or libraries that you used. You should also include a copy of the output �le in which the

failure occurs.

We would like to keep our release notes �le as up-to-date as possible. Therefore, if you

do not see an entry for your machine, please contact us with your testing results.

Comments and suggestions are also welcome.

We encourage you to make the LAPACK library available to your users and provide

us with feedback from their experiences. This release of LAPACK is not guaranteed to be

compatible with any previous test release.

Acknowledgments

Ed Anderson of Cray Research Inc. contributed to previous versions of this report.

18

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,

Second Edition, SIAM, Philadelphia, PA, 1994.

[2] E. Anderson and J. Dongarra, LAPACK Working Note 16: Results from the Initial

Release of LAPACK, University of Tennessee, CS-89-89, November 1989.

[3] E. Anderson, J. Dongarra, and S. Ostrouchov, LAPACK Working Note 41: Installa-

tion Guide for LAPACK, University of Tennessee, CS-92-151, February 1992 (revised

October 1994).

[4] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and

D. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne National

Laboratory, ANL-88-38, September 1988.

[5] Z. Bai, J. Demmel, and A. McKenney, LAPACK Working Note #13: On the Condi-

tioning of the Nonsymmetric Eigenvalue Problem: Theory and Software, University of

Tennessee, CS-89-86, October 1989.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic Linear

Algebra Subprograms," ACM Trans. Math. Soft., 16, 1:1-17, March 1990

[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic Linear

Algebra Subprograms: Model Implementation and Test Programs," ACM Trans. Math.

Soft., 16, 1:18-28, March 1990

[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran

Basic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.

[9] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran

Basic Linear Algebra Subprograms: Model Implementation and Test Programs," ACM

Trans. Math. Soft., 14, 1:18-32, March 1988.

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear Algebra

Subprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September

1979.

19

	Abstract
	Intro duction
	Revisions Since the First Public Release
	File Format
	Overview of Tap e Contents
	LAPACK Routines
	Level 1, 2, and 3 BLAS
	LAPACK Test Routines
	LAPACK Timing Routines

	Installing LAPACK on a Unix System
	Read the Tap e or Untar the File
	Edit the file LAPACK/make.inc
	Edit the file LAPACK/Makefile

	Further Details of the Installation Pro cess
	Test and Install the Machine Dep endent Routines
	Installing LSAME
	Installing SLAMCH and DLAMCH
	Installing SECOND and DSECND

	Create the BLAS Library
	Run the BLAS Test Programs
	Create the LAPACK Library
	Create the Test Matrix Generator Library
	Run the LAPACK Test Programs
	Testing the Linear Equations Routines
	Testing the Eigensystem Routines

	Run the LAPACK Timing Programs
	Timing the Linear Equations Routines
	Timing the BLAS
	Timing the Eigensystem Routines

	Send the Results to Tennessee

	Acknowledgments

