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Abstract

This working note describes how to install and test version 1.5 of ScaLAPACK. This release

of ScaLAPACK extends the functionality of the package by providing new routines for band

systems of linear equations and the singular value decomposition. These two-dimensional

distributed memory versions of common LAPACK routines rely on calls to the BLAS for lo-

cal computation, and calls to the PBLAS for global computations. For portability concerns,

communication takes place inside the PBLAS through calls to the BLACS. The design of

the testing/timing programs for the ScaLAPACK codes is also discussed.
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1 Introduction

This working note describes how to install and test version 1.5 of ScaLAPACK [1]. This

release of ScaLAPACK extends the functionality of the package by providing new routines

for band systems of linear equations and the singular value decomposition.

The complete ScaLAPACK package is freely available on netlib and can be obtained via

the World Wide Web or anonymous ftp.

http://www.netlib.org/scalapack/index.html

Prebuilt ScaLAPACK libraries are available on netlib for a variety of architectures.

However, if a prebuilt library does not exist for your architecture, you will need to download

the distribution tar �le and build the library as instructed in this guide.

http://www.netlib.org/scalapack/archives/index.html

The supported platforms are: the Intel i860 series, IBM SP series, Cray T3E, SGI

Power Challenge, Thinking Machines CM-5, and networks of workstations supporting MPI

or PVM3

Section 2 describes the distribution and organization of the �les. Step-by-step instal-

lation and testing/timing instructions appear in Section 3. For users desiring additional

information, Section 4 gives details on the testing/timing programs for the ScaLAPACK

codes and their input �les. Appendices A and B describe the ScaLAPACK driver, compu-

tational, and auxiliary routines currently available.

It is assumed that you have the BLACS, BLAS[9, 6, 5], MPI [7] (if necessary) and

PVM [8] (if necessary) available on your machine. If this is not the case, you MUST obtain

the missing component from netlib and have the library available for the ScaLAPACK

installation. Prebuilt BLACS libraries are available on netlib for a variety of architecture

and message passing library combinations; otherwise, the BLACS distribution tar �les are

available. The Fortran77 reference implementation of the BLAS is available, as well as PVM

and a portable implementation of MPI, called MPICH. Installation Guides are available for

the BLACS and MPICH. Refer to the following URLs for further details:

http://www.netlib.org/blacs/archives/index.html

http://www.netlib.org/blacs/index.html

http://www.netlib.org/blas/blas.shar

http://www.netlib.org/pvm3/index.html

http://www.netlib.org/mpi/index.html

2 Overview of Distribution Format and Contents

The software is distributed in the form of a gzipped tar �le which contains the ScaLA-

PACK source code and test suite, as well as the PBLAS source code and testing/timing

3It is very important to note that only PVM version 3.3 is supported with the BLACS[4, 10]. Due to

major changes in PVM and the resulting changes required in the BLACS, earlier versions of PVM are NOT

supported.
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SCALAPACK

PBLAS SRC TESTING TOOLS REDIST INSTALL

SRC TESTING LIN EIG SRC TESTING

Figure 1: Organization of ScaLAPACK

programs. The PBLAS are parallel versions of the Level 1, 2, and 3 BLAS. For more details

on the PBLAS, refer to [2, 3].

The software in the tar �le is organized in a number of directories as shown in Figure 1.

Please note that this �gure does not reect everything that is contained in the SCALAPACK

directory. Input and instructional �les are also located at various levels. Libraries are

created in the SCALAPACK directory and executable �les are created in the TESTING direc-

tory(ies). Input �les are copied into the TESTING directory at the time each executable is

created.

All precisions of ScaLAPACK routines are available with the exception of the singular

value decomposition, the nonsymmetric eigenproblem, and the QR-based driver for the

symmetric eigenproblem.

2.1 ScaLAPACK Routines

Like LAPACK, there are three classes of ScaLAPACK routines:

� Driver routines solve a complete problem, such as solving a system of linear equations

or computing the eigenvalues of a real symmetric matrix. Please refer to Appendix A

for a list of all available driver routines. Global and local input error-checking are

performed for these routines.

� Computational routines, also called simply ScaLAPACK routines, perform a distinct

computational task, such as computing the LU decomposition of anm-by-nmatrix, or

reducing a real general matrix to upper Hessenberg form. Please refer to Appendix A

for a list of all available ScaLAPACK computational routines. Global and local input

error-checking are performed for these routines.

� Auxiliary routines are all of the other subroutines called by the computational rou-

tines. Among them are subroutines to perform subtasks of block algorithms, and a

number of routines to perform common low-level computations. In general, no input

error-checking is performed on the auxiliary routines. The exception to this rule is for

the auxiliary routines which are Level 2 equivalents of computational routines (e.g.,

PxGETF2, PxGEQR2, PxORMR2, PxORM2R, etc.). For these routines, local input

error-checking routines is performed.

LAPACK auxiliary routines are also used whenever possible for local computation.

ScaLAPACK provides two matrix redistribution/copy routines (in SCALAPACK/REDIST)

for each data type. These routines provide a truly general copy from any block cyclicly

distributed (sub)matrix to any other block cyclicly distributed (sub)matrix. These routines

are the only ones in the entire ScaLAPACK library which provide inter-context operations.
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2.2 Testing/Timing Routines

Testing/timing programs are included for each of the ScaLAPACK routines. Refer to

section 4 for more details.

3 Installation Procedure

Installing, testing, and timing ScaLAPACK involves the following steps:

1. Locate or build MPI or PVM library, if necessary.

2. Download prebuilt BLACS library, or build if necessary.

3. Locate the optimized BLAS library, or build if necessary.

4. Gunzip and tar the �le scalapack.tar.gz.

5. Edit the SLmake.inc include �le.

6. Edit the top-level Makefile, and type make.

7. Run the Test Suite(s).

8. Communicate any di�culties to the authors.

3.1 Locate or build the PVM or MPI Library

A native MPI or PVM library may be available on the architecture to which you are

installing ScaLAPACK. If one is not available you can download the freely available version

of PVM, or a portable implementation of MPI, called MPICH. Refer to the URLs:

http://www.netlib.org/pvm3/index.html

http://www.netlib.org/mpi/index.html

Installation instructions for PVM are contained in the PVM Users' Guide [8]. An

Installation Guide for MPICH is available on the aforementioned webpage.

3.2 Download the prebuilt BLACS Library, or build if necessary

If you wish to use ScaLAPACK, you MUST have an appropriate version of the BLACS

installed on your machine. If you do not already have the BLACS installed on your machine,

pre-built libraries are available on netlib for a variety of architecture and message passing

combinations.

http://www.netlib.org/blacs/archives/index.html

Otherwise, you can obtain the source code from the blacs directory on netlib.

http://www.netlib.org/blacs/index.html
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This html page also contains a troubleshooting section and detailed information on each

individual BLACS routine. After obtaining the source, follow the instructions in \A User's

Guide to the BLACS" or in the "Installing the BLACS" section of the html page to install

the library. Instructions for running the BLACS Test Suite can be found in \A User's Guide

to the BLACS Tester". Both of these documents are available via the blacs index on netlib.

3.3 Locate the optimized BLAS Library, or build if necessary

Ideally, a highly optimized version of the BLAS library already exists on your machine.

You may already have a library containing some of the BLAS, but not all (Level 1 and 2,

but not Level 3, for example). If so, you should use your local version of the BLAS wherever

possible.

If you do not already have an optimized BLAS library available on your machine, you

can download the Fortran77 reference implementation from netlib.

http://www.netlib.org/blas/blas.shar

3.4 Gunzip and tar the �le scalapack.tar.gz

To unpack the scalapack.tar.gz, type the following command:

gunzip -c scalapack.tar.gz | tar xvf -

This will create a top-level directory called SCALAPACK, with the rest of the �les in the

directory structure as previously discussed. You will need approximately 28 Mbytes of

space for the tar �le.

Your total space requirements will vary depending upon if all platforms of the BLACS

are installed and the size of executable �les that your con�guration can handle.

3.5 Edit the SLmake.inc include �le

Example machine-speci�c SCALAPACK/SLmake.inc �les are provided in the INSTALL

subdirectory for the Intel i860, IBM SP-2, Cray T3E, TMC CM-5, and various work-

stations using MPI or PVM. When you have selected the machine to which you wish

to install ScaLAPACK, copy the appropriate sample include �le (if one is present) into

SCALAPACK/SLmake.inc. For example, if you wish to run ScaLAPACK on a DEC ALPHA,

cp INSTALL/SLmake.ALPHA SLmake.inc

Edit the SLmake.inc make include �le to contain the following:

1. Specify the complete path to the top level SCALAPACK directory called home.

2. Identify the platform to which you will be installing the libraries. If your directory

structure for ScaLAPACK is di�erent than the aforementioned structure, you will also

need to specify locations of SCALAPACK subdirectories.
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3. De�ne F77, NOOPT, F77FLAGS, CC, CCFLAGS, LOADER, LOADFLAGS, ARCH, ARCHFLAGS,

and RANLIB, to refer to the compiler and compiler options, loader and loader options,

library archiver and options, and ranlib for your machine. If your machine does not

require ranlib set RANLIB = echo.

4. Specify the C preprocessor de�nitions for compilation, BLACSDBGLVL and CDEFS. The

possible values for BLACSDBGLVL are 0 and 1. The possible options for CDEFS are

-DAdd , -DNoChange, and -DUPCASE. If you are on a DEC ALPHA, you must also add

-DNO IEEE to the de�nition of CDEFS.

5. Specify the locations of the needed libraries: BLACS, PVM or MPI, and BLAS.

This make include �le is referenced inside each of the make�les in the various subdirectories.

As a result, there is no need to edit the make�les in the subdirectories. All information

that is machine speci�c has been de�ned in this include �le.

3.6 Edit the top-level SCALAPACK/Makefile and type make

A top-level SCALAPACK/Makefile has been included to build all libraries and testing ex-

ecutables. This make�le is very useful if you are familiar with the installation process

and wish to do a quick installation. Your instructions to build all libraries and testing

executables are:

cd SCALAPACK

make

Alternatively, if you wish to only build the libraries, you can specify

make lib.

Or, if you wish to only build the executables (assuming that all libraries have previously

been built)

make exe.

If you wish to build only selected libraries or executables, you can modify the lib or

exe de�nition accordingly.

To specify the data types to be built, you will need to modify the de�nition of PRECISIONS.

By default, PRECISIONS is set to

PRECISIONS = single double complex complex16

to build all precisions of the libraries and executables. If you only wish to compile the

single precision real version of a target specify single, for double precision real specify

double, for single precision complex specify complex, and for double precision complex

specify complex16.
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By default, the presence of no arguments following the make command will result in the

building of all data types. The make command can be run more than once to add another

data type to the library if necessary.

You may then proceed to running each of the individual test suites. See section 3.7 for

details on the PBLAS Test Suite, section 3.9 to run the REDIST test suite, and section

3.10 for details on the ScaLAPACK Test Suite. After all testing has been completed, you

can remove all object �les from the various subdirectories and all executables from the

SCALAPACK/TESTING directory by typing

make clean.

Or, you can selectively remove only the object �les with make cleanlib, or make

cleanexe to remove only the executable �les.

3.7 Run the PBLAS Test Suite

The PBLAS testing executables are created in the PBLASTSTdir directory as de�ned in

SLmake.inc. By default, these testing executables are copied into the SCALAPACK/TESTING

directory. For the Level 1 PBLAS routines, the testing executables are called xspblas1tst,

xdpblas1tst, xcpblas1tst, and xzpblas1tst. Likewise, the testing executables for the

Level 2 PBLAS are xspblas2tst, xdpblas2tst, xcpblas2tst, and xzpblas2tst. The

testing executables for the Level 3 PBLAS are xspblas3tst, xdpblas3tst, xcpblas3tst,

and xzpblas3tst. There is one input �le associated with each testing executable. For

example, the input �le for xspblas1tst is called PSBLA1TST.dat. The input �les are

copied to the PBLASTSTdir directory at the time the executables are built.

For brevity, we shall only list instructions for testing PBLAS executables using MPICH

on a network of workstations, and PVM on a network of workstations. Execution instruc-

tions for the various distributed-memory computers are machine-dependent.

Testing instructions with MPICH on a network of workstations

For sake of an example, we shall assume that you have installed the portable implementation

of MPI, called MPICH, and built the PBLAS tester executables for each of the machines

used in your application. The executable �les are not required to be stored in a particular

directory. Then, to run the executable, you will use the command mpirun. For example,

mpirun -np <number of processes> <executable>

where <executable> is replaced by xspblas1tst, and so on. If the network of work-

stations is heterogeneous, you will need to specify the -p4pg option and supply a text �le

containing the names of the machines and the locations of the executables to which you will

spawn tasks. Refer to the mpirun manpage for complete details.

Testing instructions with PVM on a network of workstations

First, insure that the PVM library and tester executable �les have been compiled for each

of the machines used in your PVM implementation. PVM 3.3 requires that executable
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�les be stored in a particular directory so that the PVM daemon can �nd them. In the

general case, PVM looks for executable �les in ~/pvm3/bin/arch, where arch speci�es the

architecture for which the executable has been built. For example, if one wished to run the

test program on a SUN SPARCstation and on an IBM RS6000 workstation, appropriately

compiled executable �les need to be placed in ~/pvm3/bin/SUN4 and ~/pvm3/bin/RS6K (for

more directory information, consult the PVM documentation). If you wish to run the tests

on machines that are not connected to the same �le system, you need to make sure that

the executable is available on each �le system. Next, start pvm by typing

pvm

At this point, you specify the machines that are to take part in the testing process (see

the PVM documentation for more information). Finally, to test the REAL PVM Level 1

PBLAS, start the test program by typing:

xspblas1tst

on one of the machines that is a member of your PVM machine. This program will then

instruct the PVM daemon to start processes on the other computers in your PVM machine

and you will be prompted by the program for the name of the executable. Make sure that

PSBLA1TST.dat is located in the same directory as xspblas1tst. It is read on the machine

from which you type xspb2chk and its contents distributed to the other computers in your

PVM machine.

Alternatively, you can use blacs setup.dat to perform much of this process. This �le

speci�es the name of the executable and the machines to spawn in your pvm cluster, as well

as a few other features. See the \A User's Guide to the BLACS" for details. However, the

use of this �le is not recommended for the naive user.

Similar commands should be used for the other test programs, with the second letter

`s' in the executable and data �le replaced by `d', `c', or `z'. The name of the output �le is

indicated on the �rst line of the input �le and is currently de�ned to be PSBLA1TST.SUMM for

the REAL version, with similar names for the other data types. The user may also choose

to send all output to standard error.

3.8 Run the PBLAS Timing Suite (optional)

a) Go to the directory SCALAPACK/PBLAS/TIMING.

b) Type make followed by the data types desired. For the Level 1 PBLAS routines,

the timing executables are called xspblas1tim, xdpblas1tim, xcpblas1tim, and

xzpblas1tim, and are created in the PBLASTSTdir directory as de�ned in SLmake.inc.

Likewise, the timing executables for the Level 2 PBLAS are xspblas2tim, xdpblas2tim,

xcpblas2tim, and xzpblas2tim. The timing executables for the Level 3 PBLAS are

xspblas3tim, xdpblas3tim, xcpblas3tim, and xzpblas3tim. There is one input �le

associated with each timing executable. For example, the input �le for xspblas1tim

is called PSBLA1TIM.dat. The input �les are copied to the PBLASTSTdir directory at

the time the executables are built.
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c) Run the timing executables on the desired platform as analogously described in Sec-

tion 3.7.

3.9 Run the REDIST Test Suite

The redistribution/copy routines are still under development. They allow the redistribution

of 2-D block cyclic distributed general or trapezoidal matrix from an arbitrary P �Q grid

with arbitrary blocksize to another grid with arbitrary blocksize.

a) Go to the directory SCALAPACK/REDIST/TESTING.

b) Type make followed by the data types desired. The testing executables are called

xigemr, xsgemr, xdgemr, xcgemr, xzgemr for the redistribution of general matrices.

They are called xitrmr, xstrmr, xdtrmr, xctrmr, and xztrmr for trapezoidal matri-

ces, and are created in the REDISTdir/TESTING directory as de�ned in SLmake.inc.

There is one input �le GEMR2D.dat for general matrices, and one input �le TRMR2D.dat

for trapezoidal matrices. Each line of the input �le is a separate test.

3.10 Run the ScaLAPACK Test Suite

There are seventeen distinct test programs for testing the ScaLAPACK routines of the

following type: LU, Cholesky, Band LU, Band Cholesky, General Tridiagonal, Band Tridi-

agonal, QR (RQ, LQ, QL, QP, and TZ), Linear Least Squares, upper Hessenberg reduction,

tridiagonal reduction, bidiagonal reduction, matrix inversion, the symmetric eigenproblem,

the generalized symmetric eigenproblem, and the nonsymmetric eigenproblem, and the sin-

gular value decomposition.

Each of the test programs is automatically timed and reports a table of execution

times and megaop rates. There is one input �le for each test program. As previously

stated, the input �les reside in the SCALAPACK/TESTING subdirectory and are copied into

the TESTINGdir directory (as speci�ed in the SLmake.inc �le) at the time the executables

are built. All testing programs occur in four precisions, with the exception of the nonsym-

metric eigenproblem which only occurs in SINGLE and DOUBLE PRECISION REAL. For

more information on the test programs and how to modify the input �les see Section 4.

Run the testing executables on the desired platform as analogously described in Sec-

tion 3.7. For example, in double precision, the testing executables are named xdlu, xdllt,

xddblu, xdgblu, xddtlu, xdpbllt, xdptllt, xdls, xdqr, xdhrd, xdtrd, xdbrd, xdinv,

xdsep, xdgsep, xdnep, and xdsvd. The input �les are LU.dat, LLT.dat, BLU.dat, BLLT.dat,

LS.dat, QR.dat, HRD.dat, TRD.dat, BRD.dat, INV.dat, SEP.dat, NEP.dat, and SVD.dat.

Similar commands can be used for alternate precisions of the same test program or other

test programs. The name of the output �le is indicated on the �rst line of the input �le

and is currently de�ned to be lu.out for the LU tester, with similar names for the other

data types. The user may also choose to send all output to standard error.

3.11 Send the Results to Tennessee

Congratulations! You have now �nished installing and testing ScaLAPACK. Your partic-

ipation is greatly appreciated. If possible, results and comments should be sent by electronic
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mail to

scalapack@cs.utk.edu

This release of ScaLAPACK is not compatible with any previous release.

4 More About the ScaLAPACK Test Suite

The main test programs for the ScaLAPACK routines are located in the SCALAPACK/TESTING/LIN

and SCALAPACK/TESTING/EIG subdirectories and are called pd driver.f (ps driver.f for

REAL, pc driver.f for COMPLEX, and pz driver.f for COMPLEX*16), where the

is replaced by lu, qr, llt, and so on. Each of the test programs for the ScaLAPACK

routines has a similar style of input.

The following sections describe the di�erent input formats and testing veri�cations. The

data inside the input �les is only test data designed to exercise the code. It should NOT be

interpreted in any way as OPTIMAL performance values for any of the routines. For best

performance using PVM, the largest possible blocksize NB should be used. Our experiments

on the Intel machines suggest that a blocksize of NB equal to 6 is a good starting point.

The test programs for the routines are driven by separate data �les.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main test programs. These program

maximums are:

Parameter Description Value

TOTMEM Total Memory available for testing data 2000000

INTGSZ Length in bytes to store a INTEGER element 4

REALSZ Length in bytes to store a REAL element 4

DBLESZ Length in bytes to store a DOUBLE PRECISION element 8

CPLXSZ Length in bytes to store a COMPLEX element 8

ZPLXSZ Length in bytes to store a COMPLEX*16 element 16

NTESTS Maximum number of tests to be performed 20

The user should modify TOTMEM to indicate the maximum amount of memory in

bytes his system has available. You must remember to leave room in memory for the op-

erating system, the BLACS bu�er, etc. For example, for PVM, the parameters we use are

TOTMEM=2,000,000, and the length of a DOUBLE is 8. Some experimenting with the

maximum allowable value of TOTMEM may be required. All arrays used by the factor-

izations, reductions, solves, and condition and error estimation are allocated out of the big

array called MEM.

Please note that these parameter maximums in the test programs assume at least 2

Megabytes of memory per process. Thus, if you do not have that much space per process

then you will need to reduce the size of the parameters.

For each of the test programs, the test program generates test matrices (nonsymmet-

ric, symmetric, symmetric positive-de�nite, or upper Hessenberg), calls the ScaLAPACK

routines in that path, and computes a solve and/or factorization and/or reduction residual

error check to verify that each operation has performed correctly. The factorization residual
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is only calculated if the residual for the solve step exceeds the threshold value THRESH.

Thus, if a user wants both checks automatically done then he should set THRESH = 0.0.

When the tests are run, each test ratio that is greater than or equal to the threshold

value causes a line of information to be printed to the output �le.

A table of timing information is printed in the output �le containing execution times as

well as megaop rates.

After all of the tests have been completed, summary lines are printed of the form

Finished 180 tests, with the following results:

180 tests completed and passed residual checks.

0 tests completed and failed residual checks.

0 tests skipped because of illegal input values.

END OF TESTS.

4.1 Tests for the ScaLAPACK LU routines

The LU test program generates random nonsymmetric test matrices with values in the

interval [-1,1], calls the ScaLAPACK routines to factor and solve the system, and computes

a solve and/or factorization residual error check to verify that each operation has performed

correctly. Condition estimation and iterative re�nement routines are included and are

optionally tested.

Speci�cally, each test matrix is subjected to the following tests:

� Factor the matrix A = LU using PxGETRF

� Solve the system AX = B using PxGETRS, and compute the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

� If SRESID > THRESH, then compute the ratio

FRESID = jjLU �Ajj=(njjAjj")

The expert driver (PxGESVX) performs condition estimation and iterative re�nement and

thus incorporates the following additional test:

� Compute the reciprocal condition number RCOND using PxGECON.

� Use iterative re�nement (PxGERFS) to improve the solution, and recompute the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

4.1.1 Input File for Testing the ScaLAPACK LU Routines

An annotated example of an input �le for the test program is shown below.
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'ScaLAPACK LU factorization input file'

'PVM machine.'

'lu.out' output file name (if any)

6 device out

2 number of problems sizes

250 553 values of N

3 number of NB's

2 3 5 values of NB

2 number of NRHS's

1 5 values of NRHS

3 Number of NBRHS's

1 3 5 values of NBRHS

5 Number of processor grids (ordered pairs of P & Q)

1 4 2 1 8 values of P

1 2 4 8 1 values of Q

1.0 threshold

T (T or F) Test Cond. Est. and Iter. Ref. Routines

4.2 Tests for the ScaLAPACK Band and Tridiagonal LU routines

The LU test program generates random nonsymmetric band test matrices with values in the

interval [-1,1], calls the ScaLAPACK routines to factor and solve the system, and computes

a solve and/or factorization residual error check to verify that each operation has performed

correctly.

Speci�cally, each test matrix is subjected to the following test:

� Compute the Band or Tridiagonal LU factorization using PxDBTRF (PxGBTRF or

PxDTTRF)

� Solve the system AX = B using PxDBTRS (PxGBTRS or PxDTTRS), and compute

the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

4.2.1 Input File for Testing the ScaLAPACK Band and Tridiagonal LU Rou-

tines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK, Version 1.5, banded linear systems input file'

'PVM.'

'' output file name (if any)

6 device out

'T' define transpose or not

7 3 4 8 number of problem sizes

2 5 17 28 37 121 200 1023 2048 3073 values of N

6 number of bandwidths
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1 2 3 15 6 8 values of BWL

2 1 1 4 15 6 values of BWU

1 number of NB's

-1 3 4 5 values of NB (-1 for automatic determination)

1 number of NRHS's (must be 1)

8 values of NRHS

1 number of NBRHS's (ignored)

1 values of NBRHS (ignored)

4 number of process grids

1 2 3 4 5 7 8 15 26 47 64 values of "Number of Process Columns"

3.0 threshold

4.3 Tests for the ScaLAPACK LLT routines

The Cholesky test program generates random symmetric test matrices with values in the

interval [-1,1] and then modi�es these matrices to be diagonally dominant with positive

diagonal elements thus creating symmetric positive-de�nite matrices. It then calls the

ScaLAPACK routines to factor and solve the system, and computes a solve and/or factor-

ization residual error check to verify that each operation has performed correctly. Condition

estimation and iterative re�nement routines are included and optionally tested.

Speci�cally, each test matrix is subjected to the following tests:

� Compute the LLT factorization using PxPOTRF

� Solve the system AX = B using PxPOTRS, and compute the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

� IF SRESID > THRESH, then compute the ratio

FRESID = jjLLT �Ajj=(njjAjj")

The expert driver (PxPOSVX) performs condition estimation and iterative re�nement and

thus incorporates the following additional tests:

� Compute the reciprocal condition number RCOND using PxPOCON.

� Use iterative re�nement (PxPORFS) to improve the solution, and recompute the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

4.3.1 Input File for Testing the ScaLAPACK LLT Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK LLT factorization input file'

'PVM machine.'

'lltest.out' output file name (if any)

6 device out
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2 number of problems sizes

250 553 values of N

3 number of NB's

2 3 5 values of NB

2 number of NRHS's

1 5 values of NRHS

3 Number of NBRHS's

1 3 5 values of NBRHS

5 Number of processor grids (ordered pairs of P & Q)

1 4 2 8 1 values of P

1 2 4 1 8 values of Q

1.0 threshold

T (T or F) Test Cond. Est. and Iter. Ref. Routines

4.4 Tests for the ScaLAPACK Band and Tridiagonal LLT routines

The Cholesky test program generates random symmetric positive de�nite band or tridiag-

onal test matrices with values in the interval [-1,1]. It then calls the ScaLAPACK routines

to factor and solve the system, and computes a solve residual error check to verify that each

operation has performed correctly.

Speci�cally, each test matrix is subjected to the following tests:

� Compute the Band or Tridiagonal LLT factorization using PxPBTRF (or PxPTTRF)

� Solve the system AX = B using PxPBTRS (or PxPTTRS), and compute the ratio

SRESID = jjAX �Bjj=(njjAjj jjXjj")

4.4.1 Input File for Testing the ScaLAPACK Band or Tridiagonal LLT Rou-

tines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK, banded linear systems input file'

'PVM.'

'' output file name (if any)

6 device out

'L' define Lower or Upper

7 number of problem sizes

1 5 17 28 37 121 200 values of N

6 number of bandwidths

1 2 4 10 31 64 values of BW

1 number of NB's

-1 3 4 5 values of NB (-1 for automatic determination)

1 number of NRHS's (must be 1)

8 values of NRHS

1 number of NBRHS's (ignored)
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1 values of NBRHS (ignored)

4 number of process grids

1 2 3 4 5 7 values of "Number of Process Columns"

3.0 threshold

4.5 Tests for the ScaLAPACK QR, RQ, LQ, QL, QP, and TZ routines

The QR test program generates random nonsymmetric test matrices with values in the inter-

val [-1,1], calls the ScaLAPACK routines to factor the system, and computes a factorization

residual error check to verify that each operation has performed correctly.

Speci�cally, each test matrix is subjected to the following tests:

� Compute the QR factorization using PxGEQRF, and generate the orthogonal matrix

Q from the Householder vectors

� Compute the ratio

FRESID = jjQR�Ajj=(njjAjj")

The testing of the RQ, LQ, QL, and QP routines proceeds in a similar fashion. Simply

replace all occurrences of QR in the previous discussion with RQ, LQ, QL, or QP respec-

tively. For TZ, the factorization routine is called PxTZRZF.

4.5.1 Input File for Testing the ScaLAPACK QR, RQ, LQ, QL, QP, and TZ

Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK, Orthogonal factorizations input file'

'PVM machine'

'QR.out' output file name (if any)

6 device out

6 number of factorizations

'QR' 'QL' 'LQ' 'RQ' 'QP' 'TZ' factorizations: QR, QL, LQ, RQ, QP, TZ

4 number of problems sizes

2 5 13 15 13 26 30 15 values of M

2 7 8 10 17 20 30 35 values of N

4 number of blocking sizes

4 3 5 5 4 6 values of MB

4 7 3 5 8 2 values of NB

4 number of process grids (ordered pairs P & Q)

1 2 1 4 2 3 8 values of P

1 2 4 1 3 2 1 values of Q

3.0 threshold
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4.6 Tests for the Linear Least Squares (LLS) routines

The LLS test program tests the PxGELS driver routine for computing solutions to over-

and underdetermined, full-rank systems of linear equations AX = B (A is m-by-n). For

each test matrix type, we generate three matrices: One which is scaled near underow, a

matrix with moderate norm, and one which is scaled near overow.

The PxGELS driver computes the least-squares solutions (whenm � n) and the minimum-

norm solution (when m < n) for an m-by-n matrix A of full rank. To test PxGELS, we

generate a diagonally dominant matrix A, and for C = A and C = AH , we

� generate a consistent right-hand sideB such thatX is in the range space of C, compute

a matrix X using PxGELS, and compute the ratio

jjAX �Bjj=(max(m;n)jjAjjjjXjj�)

� If C has more rows than columns (i.e. we are solving a least-squares problem), form

R = AX � B, and check whether R is orthogonal to the column space of A by

computing

jjRHCjj=(max(m;n; nrhs)jjAjjjjBjj�)

� If C has more columns than rows (i.e. we are solving an overdetermined system), check

whether the solution X is in the row space of C by scaling both X and C to have

norm one, and forming the QR factorization of D = [A;X] if C = AH , and the LQ

factorization of D = [AH ;X]H if C = A. Letting E = D(n : n+nrhs; n+1; n+nrhs)

in the �rst case, and E = D(m + 1 : m + nrhs;m + 1 : m + nrhs) in the latter, we

compute

max jdij j=(max(m;n; nrhs)�)

4.6.1 Input File for Testing the ScaLAPACK LLS Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK LLS input file'

'PVM machine'

'LS.out' output file name (if any)

6 device out

3 number of problems sizes

55 17 31 values of M

5 71 31 values of N

3 number of NB's

2 3 5 values of NB

3 number of NRHS's

2 3 5 values of NRHS

2 number of NBRHS's

1 2 values of NBRHS

4 number of process grids (ordered pairs P & Q)

1 2 1 4 2 3 8 values of P

1 2 4 1 3 2 1 values of Q

4.0 threshold
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4.7 Tests for the ScaLAPACK INV routines

The inversion test driver tests �ve di�erent matrix types { general nonsymmetric (GEN),

general upper or lower triangular (UTR and LTR), and symmetric positive de�nite (upper

or lower triangular) (UPD or LPD).

� If GEN, compute the LU factorization using PxGETRF, and then compute the inverse

by invoking PxGETRI

� If UTR or LTR, set UPLO='U' or UPLO='L' respectively, and compute the inverse

by invoking PxTRTRI

� If UPD or LPD, set UPLO='U' or UPLO='L' respectively, compute the Cholesky

factorization using PxPOTRF, and then compute the inverse by invoking PxPOTRI

� Compute the ratio

FRESID = jjAA�1 � Ijj=(njjAjj")

4.7.1 Input File for Testing the ScaLAPACK INV Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK, Matrix Inversion Testing input file'

'PVM machine.'

'INV.out' output file name (if any)

6 device out

5 number of matrix types (next line)

'GEN' 'UTR' 'LTR' 'UPD' 'LPD' GEN, UTR, LTR, UPD, LPD

4 number of problems sizes

2 5 10 15 13 20 30 50 values of N

4 number of NB's

2 3 4 5 6 20 values of NB

4 number of process grids (ordered P & Q)

1 2 1 4 2 3 8 values of P

1 1 4 1 3 2 1 values of Q

1.0 threshold

4.8 Tests for the ScaLAPACK HRD routines

The HRD test program generates random nonsymmetric test matrices with values in the

interval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper Hessenberg

form, and computes a reduction residual error check to verify that each operation has

performed correctly.

Speci�cally, each test matrix is subjected to the following tests:

� Reduce the matrix A to upper Hessenberg form H using PxGEHRD

QT �A �Q = H.
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� and compute the ratio

FRESID = jjQ �H �QT �Ajj=(njjAjj")

4.8.1 Input File for Testing the ScaLAPACK HRD Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK HRD input file'

'PVM machine.'

'HRD.out' output file name (if any)

6 device out

1 number of problems sizes

100 101 values of N

1 1 values of ILO

100 101 values of IHI

1 number of NB's

2 1 2 3 4 5 values of NB

1 number of processor grids (ordered pairs of P & Q)

2 1 4 values of P

2 4 1 values of Q

1.0 threshold

4.9 Tests for the ScaLAPACK TRD routines

The TRD test program generates random symmetric test matrices with values in the interval

[-1,1], calls the ScaLAPACK routines to reduce the test matrix to symmetric tridiagonal

form, and computes a reduction residual error check to verify that each operation has

performed correctly.

Speci�cally, each test matrix is subjected to the following tests:

� Reduce the symmetric matrix A to symmetric tridiagonal form T using PxSYTRD

QT �A �Q = T .

� and compute the ratio

FRESID = jjQ � T �QT �Ajj=(njjAjj")

4.9.1 Input File for Testing the SCALAPACK TRD Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK TRD computation input file'

'PVM machine.'

'TRD.out' output file name

6 device out

'L' define Lower or Upper
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2 number of problems sizes

16 17 100 101 values of N

3 number of NB's

3 4 5 values of NB

3 Number of processor grids (ordered pairs of P & Q)

2 4 1 values of P

2 1 4 values of Q

1.0 threshold

4.10 Tests for the ScaLAPACK BRD routines

The BRD test program generates random nonsymmetric test matrices with values in the

interval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper or lower

bidiagonal form, and computes a reduction residual error check to verify that each operation

has performed correctly.

Speci�cally, each test matrix is subjected to the following tests:

� Reduce the matrix A to upper or lower bidiagonal form B using PxGEBRD

QT �A � P = B.

� and compute the ratio

FRESID = jjQ � B � P T �Ajj=(njjAjj")

4.10.1 Input File for Testing the ScaLAPACK BRD Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK BRD input file'

'PVM machine.'

'BRD.out' output file name (if any)

6 device out

3 number of problems sizes

16 14 25 15 16 values of M

9 13 20 15 16 values of N

2 number of NB's

3 4 5 values of NB

3 Number of processor grids (ordered pairs of P & Q)

2 4 1 values of P

2 1 4 values of Q

1.0 threshold

4.11 Tests for the ScaLAPACK SEP routines

The following tests will be performed on PxSYEVX/PxHEEVX and PxSYEV:
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r1 =
kAZ � ZLk

abstol+ ulp kAk

r2 =
kZ�Z � Ik

ulp kAk

where Z is the matrix of eigenvectors returned when the eigenvector option is given, L is

the matrix of eigenvalues, ulp represents PxLAMCH( ICTXT, 'P' ), and abstol represents

ulp � kAk.

The tester allows multiple test requests to be controlled from a single input �le. Each

test request is controlled by the following inputs:

Values of N

N = The matrix size

Values of P, Q, NB

P = NPROW, the number of processor rows

Q = NPCOL, the number of processor columns

NB = the block size

Values of the matrix types

See Section 4.11.1.

Number of eigen requests

1 = Test full eigendecomposition only

8 = Test the following eigen requests:

Full eigendecomposition

All eigenvalues, no eigenvectors

Eigenvalues requested by value (i.e. VL,VU)

Eigenvalues and vectors requested by value

Eigenvalues requested by index (i.e. IL, IU)

Eigenvalues and vectors requested by index

Full eigendecomposition with minimal workspace provided

Full eigendecomposition with random workspace provided

Threshold

The highest value of r1; r2 and r3 that will be accepted.

Absolute tolerance

Must be -1.0 to ensure orthogonal eigenvectors

Print Request

1 = Print every test

2 = Print only failing tests and a summary of the request
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4.11.1 Test Matrices for the Symmetric Eigenvalue Routines

Twenty-two di�erent types of test matrices may be generated for the symmetric eigen-

value routines. Table 1 shows the types, along with the numbers used to refer to the matrix

types. Except as noted, all matrices have norm O(1). The expression UDU�1 means a

real diagonal matrix D with entries of magnitude O(1) conjugated by a unitary (or real

orthogonal) matrix U .

Eigenvalue Distribution

Type Arithmetic Geometric Clustered Other

Zero 1

Identity 2

Diagonal 3 4, 6y, 7z 5

UDU�1 8, 11y, 12z, 9, 17� 10, 18�

16�, 19?, 20�

Symmetric w/Random entries 13, 14y, 15z

Tridiagonal 21a

Multiple Clusters 22b

y{ matrix entries are O(
p
overow)

z{ matrix entries are O(
p
underow)

� { diagonal entries are positive

? { matrix entries are O(
p
overow) and diagonal entries are positive

� { matrix entries are O(
p
underow) and diagonal entries are positive

a { Some of the immediately o�-diagonal elements are zero - guaranteeing splitting

b { Clusters are sized: 1, 2, 4, . . . , 2i.

Table 1: Test matrices for the symmetric eigenvalue problem

4.11.2 Input File for Testing the Symmetric Eigenvalue Routines and Drivers

An annotated example of an input �le for testing the symmetric eigenvalue routines and

drivers is shown below.

'ScaLAPACK Symmetric Eigensolver Test File'

' '

'sep.out' output file name (if any)

6 device out (13 & 14 reserved for internal testing)

4 maximum number of processes

'N' disable pxsyev tests, recommended for heterogeneous systems.

' '

'TEST 1 - test tiny matrices - different process configurations'

3 number of matrices

0 1 2 matrix size

1 number of uplo choices

'L' uplo choices
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2 number of processor configurations (P, Q, NB)

1 1 values of P (NPROW)

2 1 values of Q (NPCOL)

1 1 values of NB

1 number of matrix types

8 matrix types (see pdseptst.f)

'N' perform subset tests?

80.0 Threshold (* 5 for generalized tests)

-1 Absolute Tolerance

' '

'End of tests'

-1

4.12 Tests for the ScaLAPACK GSEP routines

Finding the eigenvalues and eigenvectors of symmetric matrices A and B, where B is also

positive de�nite, follows the same stages as the symmetric eigenvalue problem except that

the problem is �rst reduced from generalized to standard form using PxSYGST/PxHEGST.

To check these calculations, the following test ratios are computed:

r1 =
kAZ �B Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEGVX with ITYPE=1 and UPLO='U'

r2 =
kAZ �B Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEGVX with ITYPE=1 and UPLO='L'

r5 =
kAZ �B Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEEVX with ITYPE=2 and UPLO='U'

r8 =
kAB Z � Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEEVX with ITYPE=2 and UPLO='L'

r10 =
kAB Z � Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEEVX with ITYPE=3 and UPLO='U'

r12 =
kBAZ � Z Dk

kAk kZk nulp

calling PxSYGVX/PxHEEVX with ITYPE=3 and UPLO='L'

r14 =
kBAZ � Z Dk

kAk kZk nulp

(1)
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4.12.1 Input File for Testing the Generalized Symmetric Eigenvalue Routines

and Drivers

The input �le for testing the generalized symmetric eigenvalue routines and drivers is

the same as that for testing the symmetric eigenproblem routines. Refer to the Section

4.11.2 for further details.

4.13 Tests for the ScaLAPACK NEP routines

The PxLAHQR test program generates random upper Hessenberg matrices, completes a

Schur decomposition on them, and then tests the resulting Schur decomposition for main-

taining similiarity. The following tests will be performed on P LAHQR:

r1 =

H �QSQT


nulp kHk

r2 =

I �QTQ


nulp

(2)

where Q is the Schur vectors of the upper Hessenberg matrix H when the Schur vector

and Schur decomposition option is given. N is the order of the matrix, ulp represents

PxLAMCH( ICTXT, 'P' ), and the one-norm is used for the norm computations.

4.13.1 Input File for Testing the ScaLAPACK NEP Routines

An annotated example of an input �le for the test program is shown below.

'SCALAPACK NEP (Nonsymmetric Eigenvalue Problem) input file'

'PVM Machine'

'NEP.out' output file name (if any)

6 device out

8 number of problems sizes

1 2 3 4 6 10 100 200 values of N

3 number of NB's

6 20 40 values of NB

4 number of process grids (ordered pairs of P & Q)

1 2 1 4 values of P

1 2 4 1 values of Q

20.0 threshold

4.14 Tests for the ScaLAPACK SVD routines

The following tests will be performed on PDGESVD. A number of matrix \types" are

speci�ed, as denoted in Table 2. For each type of matrix, and for the minimal workspace

as well as for larger than minimal workspace an M -byN matrix \A" with known singular
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values is generated and used to test the SVD routines. For each matrix, A will be factored

as A = U diag(S) V T and the following 9 tests computed:

r1 =
kA� U1diag(S1)V T1k

kAkmax(M;N)ulp

r2 =

I � (U1)TU1


M ulp

r3 =

I � V T1(V T1)T


N ulp

r4 =

(
0 if S1 contains SIZE nonnegative values in decreasing order.
1

ulp
otherwise

r5 =
kS1� S2k

SIZEM kSk

r6 =
kU1� U2k

M ulp

r7 =
kS1� S3k

SIZE ulp kSk

r8 =
kV T1� V T3k

N ulp

r9 =
kS1� S4k

SIZE ulp kSk

where ulp represents PxLAMCH(ICTXT, 'P').

4.14.1 Test Matrices for the Singular Value Decomposition Routines

Six di�erent types of test matrices may be generated for the singular value decomposition

routines. Table 2 shows the types available, along with the numbers used to refer to the

matrix types. Except as noted, all matrix types other than the random bidiagonal matrices

have O(1) entries. The expression UDV means a real diagonal matrix D with O(1) entries

multiplied by unitary (or real orthogonal) matrices on the left and right.

Singular Value Distribution

Type Arithmetic Other

Zero 1

Identity 2

Diagonal 3

UDV 4, 5y, 6z

y{ matrix entries are O(
p
overow)

z{ matrix entries are O(
p
underow)

Table 2: Test matrices for the singular value decomposition
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4.14.2 Input File for Testing the ScaLAPACK SVD Routines

An annotated example of an input �le for the test program is shown below.

'ScaLAPACK Singular Value Decomposition input file'

6 device out

4 maxnodes

' '

'TEST 1 - test medium matrices - all types and requests'

20.0 Threshold

1 number of matrices

100 number of rows

25 number of columns

1 number of processor configurations (P, Q, NB)

2 values of P (NPROW)

2 values of Q (NPCOL)

8 values of NB

' '

'End of tests'

-1
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Appendix A

ScaLAPACK Routines

In this appendix, we review the subroutine naming scheme for ScaLAPACK and indicate

by means of a table which subroutines are included in this release. We also list the driver

routines.

Each subroutine name in ScaLAPACK, which has an LAPACK equivalent, is simply

the LAPACK name prepended by a P. All names consist of seven characters in the form

PTXXYYY. The second letter, T, indicates the matrix data type as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 (if available)

The next two letters, XX, indicate the type of matrix. Most of these two-letter codes

apply to both real and complex routines; a few apply speci�cally to one or the other, as

indicated below:

DB general band (diagonally-dominant like)

DT general tridiagonal (diagonally-dominant like)

GB general band

GE general (i.e. unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e. a pair of general matrices)

HE (complex) Hermitian

OR (real) orthogonal

PB symmetric or Hermitian positive de�nite band

PO symmetric or Hermitian positive de�nite

PT symmetric or Hermitian positive de�nite tridiagonal

ST symmetric tridiagonal

SY symmetric

TR triangular (or in some cases quasi-triangular)

TZ trapezoidal

UN (complex) unitary
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The last three characters, YYY, indicate the computation done by a particular subrou-

tine. Included in this release are subroutines to perform the following computations:

BRD reduce to bidiagonal form by orthogonal transformations

CON estimate condition number

EBZ compute selected eigenvalues by bisection

EIN compute selected eigenvectors by inverse iteration

EQU equilibrate a matrix to reduce its condition number

GBR generate the orthogonal/unitary matrix from PxGEBRD

GHR generate the orthogonal/unitary matrix from PxGEHRD

GLQ generate the orthogonal/unitary matrix from PxGELQF

GQL generate the orthogonal/unitary matrix from PxGEQLF

GQR generate the orthogonal/unitary matrix from PxGEQRF

GRQ generate the orthogonal/unitary matrix from PxGERQF

GST reduce a symmetric-de�nite generalized eigenvalue problem to standard form

HRD reduce to upper Hessenberg form by orthogonal transformations

LQF compute an LQ factorization without pivoting

MBR multiply by the orthogonal/unitary matrix from PxGEBRD

MHR multiply by the orthogonal/unitary matrix from PxGEHRD

MLQ multiply by the orthogonal/unitary matrix from PxGELQF

MQL multiply by the orthogonal/unitary matrix from PxGEQLF

MQR multiply by the orthogonal/unitary matrix from PxGEQRF

MRQ multiply by the orthogonal/unitary matrix from PxGERQF

MRZ multiply by the orthogonal/unitary matrix from PxTZRZF

MTR multiply by the orthogonal/unitary matrix from PxxxTRD

QLF compute a QL factorization without pivoting

QPF compute a QR factorization with column pivoting

QRF compute a QR factorization without pivoting

RFS re�ne initial solution returned by TRS routines

RQF compute an RQ factorization without pivoting

RZF compute an RZ factorization without pivoting

TRD reduce a symmetric matrix to real symmetric tridiagonal form

TRF compute a triangular factorization (LU, Cholesky, etc.)

TRI compute inverse (based on triangular factorization)

TRS solve systems of linear equations (based on triangular factorization)

Given these de�nitions, the following table indicates the ScaLAPACK subroutines for

the solution of systems of linear equations:
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HE UN

GE GG DB GB DT GT PO PB PT SY TR TZ OR

TRF � � � � � � �

TRS � � � � � � � �

RFS � � �

TRI � � �

CON � � �

EQU � �

QPF �

QRFy � �

RZF �

GQRy �

MQRz �

y{ also RQ, QL, and LQ

z{ also RQ, RZ, QL, and LQ

The following table indicates the ScaLAPACK subroutines for �nding eigenvalues and

eigenvectors or singular values and singular vectors:

HE

GE GG HS HG TR TG SY ST PT BD

HRD �

TRD �

BRD �

EQZ

EIN �

EBZ �

GST �

Orthogonal/unitary transformation routines have also been provided for the reductions

that use elementary transformations.
UN

OR

GHR �

GTR �

GBR �

MHR �

MTR �

MBR �

In addition, a number of driver routines are provided with this release. The naming

convention for the driver routines is the same as for the LAPACK routines, but the last

3 characters YYY have the following meanings (note an `X' in the last character position

indicates a more expert driver):

SV factor the matrix and solve a system of equations

SVX equilibrate, factor, solve, compute error bounds and do iterative re�nement, and

estimate the condition number
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LS solve over- or underdetermined linear system using orthogonal factorizations

EV compute all eigenvalues and/or eigenvectors

EVX compute selected eigenvalues and eigenvectors

GVX compute selected generalized eigenvalues and/or generalized eigenvectors

SVD compute the SVD and/or singular vectors

The driver routines provided in ScaLAPACK are indicated by the following table:

HE HB

GE GG DB GB DT GT PO PB PT SY SB ST

SV � � � � � � �

SVX � �

LS �

EV �

EVX �

GVX �

SVD �
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Appendix B

ScaLAPACK Auxiliary Routines

This appendix lists all of the auxiliary routines (except for the BLAS and LAPACK)

that are called from the ScaLAPACK routines. These routines are found in the direc-

tory SCALAPACK/SRC. Routines speci�ed with a �rst character P followed by an underscore

as the second character are available in all four data types (S, D, C, and Z), except those

marked (real), for which the �rst character may be `S' or `D', and those marked (complex),

for which the �rst character may be `C' or `Z'.

Functions for computing norms:

P LANGE General matrix

P LANHE (complex) Hermitian matrix

P LANHS Upper Hessenberg matrix

P LANSY Symmetric matrix

P LANTR Trapezoidal matrix

Level 2 BLAS versions of the block routines:

P GEBD2 reduce a general matrix to bidiagonal form

P GEHD2 reduce a square matrix to upper Hessenberg form

P GELQ2 compute an LQ factorization without pivoting

P GEQL2 compute a QL factorization without pivoting

P GEQR2 compute a QR factorization without pivoting

P GERQ2 compute an RQ factorization without pivoting

P GETF2 compute the LU factorization of a general matrix

P HETD2 (complex) reduce a Hermitian matrix to real tridiagonal form

P ORG2L (real) generate the orthogonal matrix from PxGEQLF

P ORG2R (real) generate the orthogonal matrix from PxGEQRF

P ORGL2 (real) generate the orthogonal matrix from PxGEQLF

P ORGR2 (real) generate the orthogonal matrix from PxGERQF

P ORM2L (real) multiply by the orthogonal matrix from PxGEQLF

P ORM2R (real) multiply by the orthogonal matrix from PxGEQRF

P ORML2 (real) multiply by the orthogonal matrix from PxGELQF

P ORMR2 (real) multiply by the orthogonal matrix from PxGERQF

P ORMR3 (real) multiply by the orthogonal matrix from PxTZRZF
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P POTF2 compute the Cholesky factorization of a positive de�nite matrix

P SYGS2 (real) reduce a symmetric-de�nite generalized eigenvalue problem to

P SYTD2 (real) reduce a symmetric matrix to tridiagonal form

P TRTI2 compute the inverse of a triangular matrix

P UNG2L (complex) generate the unitary matrix from PxGEQLF

P UNG2R (complex) generate the unitary matrix from PxGEQRF

P UNGL2 (complex) generate the unitary matrix from PxGEQLF

P UNGR2 (complex) generate the unitary matrix from PxGERQF

P UNM2L (complex) multiply by the unitary matrix from PxGEQLF

P UNM2R (complex) multiply by the unitary matrix from PxGEQRF

P UNML2 (complex) multiply by the unitary matrix from PxGELQF

P UNMR2 (complex) multiply by the unitary matrix from PxGERQF

P UNMR3 (complex) multiply by the unitary matrix from PxTZRZF

Other ScaLAPACK auxiliary routines:

P LABAD (real) returns square root of underow and overow if exponent range is large

P LABRD reduce NB rows or columns of a matrix to upper or lower bidiagonal form

P LACGV (complex) conjugates a complex vector of length n

P LACHKIEEE (real) performs a simple check for the features of the IEEE standard

P LACON estimate the norm of a matrix for use in condition estimation

P LACONSB (real) looks for two consecutive small subdiagonal elements

P LACP2 copies all or part of a distributed matrix to another distributed matrix

P LACP3 (real) copies from a global parallel array into a local

replicated array or vice versa.

P LACPY copy all or part of a distributed matrix to another distributed matrix

P LAEVSWP moves the eigenvectors from where they are computed to a

standard block cyclic array

P LAHQR Find the Schur factorization of a Hessenberg matrix (modi�ed version of

HQR from EISPACK)

P LAHRD reduce NB columns of a general matrix to Hessenberg form

P LAIECTB (real) computes the number of negative eigenvalues in (A� �I)

where the sign bit is assumed to be bit 32.

P LAIECTL (real) computes the number of negative eigenvalues in (A� �I)

where the sign bit is assumed to be bit 64.

P LAPIV applies permutation matrix to a general distributed matrix

P LAQGE equilibrate a general matrix

P LAQSY equilibrate a symmetric matrix

P LARED1D (real) Redistributes an array assuming that the input

array, BYCOL, is distributed across rows and that all

process columns contain the same copy of BYCOL.

P LARED2D Redistributes an array assuming that the input array,

BYROW, is distributed across columns and that all process

rows contain the same copy of BYROW. The output array,

BYALL, will be identical on all processes.

P LARF apply (multiply by) an elementary reector to a general

33



rectangular matrix.

P LARFB apply (multiply by) a block reector or its transpose/

conjugate-transpose to a general rectangular matrix.

P LARFC (complex) apply (multiply by) the conjugate-transpose

of an elementary reector to a general matrix.

P LARFG generate an elementary reector (Householder matrix).

P LARFT form the triangular factor of a block reector

P LARZ apply (multiply by) an elementary reector as returned by

P TZRZF to a general matrix.

P LARZB apply (multiply by) a block reector or its transpose/

conjugate transpose as returned by P TZRZF to a general matrix.

P LARZC (complex) apply (multiply by) the conjugate transpose of

an elementary reector as returned by P TZRZF to a

general matrix.

P LARZT form the triangular factor of a block reector as returned

by P TZRZF.

P LASCL multiplies a general rectangular matrix by a real scalar CTO/CFROM

P LASET initializes a matrix to BETA on the diagonal and ALPHA on

the o�-diagonals

P LASMSUB (real) looks for a small subdiagonal element from the bottom

of the matrix that it can safely set to zero.

P LASNBT computes the position of the sign bit of a double precision

oating point number

P LASSQ Compute a scaled sum of squares of the elements of a vector

P LASWP Perform a series of row interchanges

P LATRA computes the trace of a distributed matrix

P LATRD reduce NB rows and columns of a real symmetric or complex Hermitian

matrix to tridiagonal form

P LATRS solve a triangular system with scaling to prevent overow

P LATRZ reduces an upper trapezoidal matrix to upper triangular form

P LAUU2 Unblocked version of P LAUUM

P LAUUM Compute the product U*U' or L'*L (blocked version)

P LAWIL (real) forms the Wilkinson transform
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