
SuperLU Users' Guide

James W. Demmel� John R. Gilberty Xiaoye S. Liz

February 4, 1997

Contents

1 Introduction 3

1.1 About SuperLU : 3

1.2 Availability : 3

1.3 How to call a SuperLU routine : 3

2 Matrix data structures 5

3 Permutations 8

3.1 Ordering for sparsity : 8

3.2 Partial pivoting with threshold : 10

4 User-callable routines 10

4.1 Driver routines : 11

4.2 Computational routines : 11

5 Matlab interface 12

6 Memory management for L and U 13

7 Installation 14

7.1 File structure : 14

7.2 Testing : 16

7.3 Performance-tuning parameters : 17

7.4 Error handling : 17

8 Statistics 18

�Computer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.edu). The research

of Demmel and Li was supported in part by NSF grant ASC{9313958, DOE grant DE{FG03{94ER25219, UT

Subcontract No. ORA4466 from ARPA Contract No. DAAL03{91{C0047, DOE grant DE{FG03{94ER25206, and

NSF Infrastructure grants CDA{8722788 and CDA{9401156.
yXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@parc.xerox.com). The

research of this author was supported in part by the Institute for Mathematics and Its Applications at the University of
Minnesota and in part by DARPA Contract No. DABT63-95-C0087. Copyright c
 1994-1997 by Xerox Corporation.

All rights reserved.
zNational Energy Research Scienti�c Computing (NERSC), Lawrence Berkeley National Lab, 1 Cyclotron Rd,

Berkeley, CA 94720 (xiaoye@nersc.gov). Part of the work was done while being a graduate student at U.C. Berkeley.

1

9 Example programs 18

9.1 Repeated factorizations : 20

9.2 Calling from Fortran : 20

10 Acknowledgement 20

A Speci�cations of routines 23

A.1 SGSEQU : 23

A.2 SGSCON : 24

A.3 SGSRFS : 25

A.4 SGSSV : 27

A.5 SGSSVX : 28

A.6 SGSTRF : 34

A.7 SGSTRS : 37

A.8 SLAQGS : 38

2

1 Introduction

1.1 About SuperLU

The SuperLU package contains a set of subroutines to solve sparse linear systems AX = B. Here

A is a square, nonsingular, n� n sparse matrix, and X and B are dense n� nrhs matrices, where

nrhs is the number of right-hand sides and solution vectors. Matrix A need not be symmetric or

de�nite; indeed, SuperLU is particularly appropriate for matrices with very unsymmetric structure.

The package uses LU decomposition with partial pivoting, and forward/back substitutions. The

columns of A may be preordered before factorization (either by the user or by SuperLU); this pre-

ordering for sparsity is completely separate from the factorization. To improve backward stability,

we provide working precision iterative re�nement subroutines [2]. Routines are also available to

equilibrate the system, estimate the condition number, calculate the relative backward error, and

estimate error bounds for the re�ned solutions. We also include a Matlab MEX-�le interface, so

that our factor and solve routines can be called as alternatives to those built into Matlab. The LU

factorization routines can handle non-square matrices, but the triangular solves are performed only

for square matrices.

The factorization algorithm uses a graph reduction technique to reduce graph traversal time in

the symbolic analysis. We exploit dense submatrices in the numerical kernel, and organize compu-

tational loops in a way that reduces data movement between levels of the memory hierarchy. The

resulting algorithm is highly e�cient on modern architectures. The performance gains are particu-

larly evident for large problems. There are \tuning parameters" to optimize the peak performance

as a function of cache size. For a detailed description of the algorithm, see reference [4].

SuperLU is implemented in ANSI C, and must be compiled with a standard ANSI C compiler.

It includes versions for both real and complex matrices, in both single and double precision. The

�le names for the single-precision real version start with letter \s" (such as sgstrf.c); the �le

names for the double-precision real version start with letter \d" (such as dgstrf.c); the �le names

for the single-precision complex version start with letter \c" (such as cgstrf.c); the �le names for

the double-precision complex version start with letter \z" (such as zgstrf.c).

1.2 Availability

The package can be obtained from Netlib through the URL address:

http://www.netlib.org/scalapack/prototype/

It is also available on the FTP server at UC Berkeley:

ftp ftp.cs.berkeley.edu

login: anonymous

ftp> cd /pub/src/lapack/SuperLU

ftp> binary

ftp> get superlu_1.0.tar.gz

1.3 How to call a SuperLU routine

As a simple example, let us consider how to solve a 5� 5 sparse linear system AX = B, by calling

a driver routine dgssv. Figure 1 shows matrix A, and its L and U factors.

3

0
BBBBB@

s u u

l u

l p

e u

l l r

1
CCCCCA

0
BBBBB@

19:00 21:00 21:00

0:63 21:00 �13:26 �13:26

0:57 23:58 7:58

5:00 21:00

0:63 0:57 �0:24 �0:77 34:20

1
CCCCCA

Original matrix A Factors F = L+ U � I

s = 19; u = 21; p = 16; e = 5; r = 18; l = 12

Figure 1: A 5� 5 matrix and its L and U factors.

The program �rst initializes the three arrays, a[], asub[] and xa[], which store the nonzero

coe�cients of matrix A, their row indices, and the indices indicating the beginning of each column in

the coe�cient and row index arrays. This storage format is called compressed column format, also

known as Harwell-Boeing format [5]. Next, the two utility routines dCreate CompCol Matrix and

dCreate Dense Matrix are called to set up matrices A and B, respectively, in the data structures

internally used by SuperLU. The routine get perm c is called to generate a column permutation

vector, stored in perm c[]. A good column permutation should make the L and U factors as sparse

as possible. The user can supply perm c[] instead of using the one provided by SuperLU. After

calling the SuperLU routine dgssv, the B matrix is overwritten by the solution matrix X . In

the end, all the dynamically allocated data structures are de-allocated by calling various utility

routines.

The SuperLU package can perform more general tasks, which will be explained later.

#include "dsp_defs.h"

#include "util.h"

main(int argc, char *argv[])

{

SuperMatrix A, L, U, B;

double *a, *rhs;

double s, u, p, e, r, l;

int *asub, *xa;

int *perm_r; /* row permutations from partial pivoting */

int *perm_c; /* column permutation vector */

int nrhs, info, i, m, n, nnz, permc_spec;

/* Initialize matrix A. */

m = n = 5;

nnz = 12;

if (!(a = doubleMalloc(nnz))) ABORT("Malloc fails for a[].");

if (!(asub = intMalloc(nnz))) ABORT("Malloc fails for asub[].");

if (!(xa = intMalloc(n+1))) ABORT("Malloc fails for xa[].");

s = 19.0; u = 21.0; p = 16.0; e = 5.0; r = 18.0; l = 12.0;

a[0] = s; a[1] = l; a[2] = l; a[3] = u; a[4] = l; a[5] = l;

a[6] = u; a[7] = p; a[8] = u; a[9] = e; a[10]= u; a[11]= r;

asub[0] = 0; asub[1] = 1; asub[2] = 4; asub[3] = 1;

4

asub[4] = 2; asub[5] = 4; asub[6] = 0; asub[7] = 2;

asub[8] = 0; asub[9] = 3; asub[10]= 3; asub[11]= 4;

xa[0] = 0; xa[1] = 3; xa[2] = 6; xa[3] = 8; xa[4] = 10; xa[5] = 12;

/* Create matrix A in the format expected by SuperLU. */

dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, NC, _D, GE);

/* Create right-hand side matrix B. */

nrhs = 1;

if (!(rhs = doubleMalloc(m * nrhs))) ABORT("Malloc fails for rhs[].");

for (i = 0; i < m; ++i) rhs[i] = 1.0;

dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, DN, _D, GE);

if (!(perm_r = intMalloc(m))) ABORT("Malloc fails for perm_r[].");

if (!(perm_c = intMalloc(n))) ABORT("Malloc fails for perm_c[].");

/*

* Get column permutation vector perm_c[], according to permc_spec:

* permc_spec = 0: use the natural ordering

* permc_spec = 1: use minimum degree ordering on structure of A'*A

* permc_spec = 2: use minimum degree ordering on structure of A'+A

*/

permc_spec = 0;

get_perm_c(permc_spec, &A, perm_c);

dgssv(&A, perm_c, perm_r, &L, &U, &B, &info);

printf("dgssv() returns INFO = %d\n", info);

/* De-allocate storage */

SUPERLU_FREE (rhs);

SUPERLU_FREE (perm_r);

SUPERLU_FREE (perm_c);

Destroy_CompCol_Matrix(&A);

Destroy_SuperMatrix_Store(&B);

Destroy_SuperNode_Matrix(&L);

Destroy_CompCol_Matrix(&U);

}

2 Matrix data structures

SuperLU uses a principal data structure SuperMatrix (de�ned in SRC/supermatrix.h) to rep-

resent a general matrix, sparse or dense. Figure 2 presents the speci�cation of the SuperMatrix

structure. The SuperMatrix structure contains two levels of �elds. The �rst level de�nes all the

properties of a matrix which are independent of how it is stored in memory. In particular, it speci-

�es the following three orthogonal properties: storage type (Stype) indicates the type of the storage

scheme in *Store; data type (Dtype) encodes the four precisions; mathematical type (Mtype) spec-

5

typedef struct {

Stype_t Stype; /* Storage type: indicates the storage format of *Store. */

Dtype_t Dtype; /* Data type. */

Mtype_t Mtype; /* Mathematical type */

int nrow; /* number of rows */

int ncol; /* number of columns */

void *Store; /* pointer to the actual storage of the matrix */

} SuperMatrix;

typedef enum {

NR, /* row-wise, not supernodal */

NC, /* column-wise, not supernodal */

SR, /* row-wise, supernodal */

SC, /* column-wise, supernodal */

NCP, /* column-wise, not supernodal, permuted by columns

(After column permutation, the consecutive columns of

nonzeros may not be stored contiguously. */

DN /* Fortran style column-wise storage for dense matrix */

} Stype_t;

typedef enum {

_S, /* single */

_D, /* double */

_C, /* single-complex */

_Z /* double-complex */

} Dtype_t;

typedef enum {

GE, /* general */

TRLU, /* lower triangular, unit diagonal */

TRUU, /* upper triangular, unit diagonal */

TRL, /* lower triangular */

TRU, /* upper triangular */

SYL, /* symmetric, store lower half */

SYU, /* symmetric, store upper half */

HEL, /* Hermitian, store lower half */

HEU /* Hermitian, store upper half */

} Mtype_t;

Figure 2: SuperMatrix data structure.

6

i�es some mathematical properties. The second level (*Store) points to the actual storage used

to store the matrix. We associate with each Stype XX a storage format called XXformat, such as

NPformat, SCformat, etc.

The SuperMatrix type so de�ned can accommodate various types of matrix structures and

appropriate operations to be applied on them, although currently SuperLU implements only a

subset of this collection. Speci�cally, SuperLU assumes that all matrices are stored in column-

major order. Matrices A, L, U , B, and X can have the following types:

A L U B X

Stype NC or NCP SC NC DN DN

Dtype1 any any any any any

Mtype GE TRLU TRU GE GE

In what follows, we illustrate the storage schemes de�ned by Stype. Following C's convention,

all array indices and locations below are 0-based.

� A may have storage type NC or NCP. The NC format is the same as the Harwell-Boeing sparse

matrix format [5].

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values packed by column */

int *rowind; /* array of row indices of the nonzeros */

int *colptr; /* colptr[j] stores the location in nzval[] and rowind[]

which starts column j */

} NCformat;

The NCP format is used when A is multiplied by a permutation matrix from the right (see

Section 3). After column permutation, the consecutive columns of nonzeros may not be stored

contiguously in memory. Therefore, we need two separate arrays of indices, colbeg[] and

colend[], to indicate the beginning and end of each column in nzval[] and rowind[].

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values, packed by column */

int *rowind; /* array of row indices of the nonzeros */

int *colbeg; /* colbeg[j] stores the location in nzval[] and rowind[]

which starts column j */

int *colend; /* colend[j] stores one past the location in nzval[]

and rowind[] which ends column j */

} NCPformat;

� L is a supernodal matrix with the storage type SC. Due to the supernodal structure, L is in

fact stored as a sparse block lower triangular matrix [4].

1Dtype can be one of S, D, C or Z.

7

typedef struct {

int nnz; /* number of nonzeros in the matrix */

int nsuper; /* index of the last supernode */

void *nzval; /* array of nonzero values packed by column */

int *nzval_colptr; /* nzval_colptr[j] stores the location in

nzval[] which starts column j */

int *rowind; /* array of compressed row indices of

rectangular supernodes */

int *rowind_colptr;/* rowind_colptr[j] stores the location in

rowind[] which starts column j */

int *col_to_sup; /* col_to_sup[j] is the supernode number to

which column j belongs */

int *sup_to_col; /* sup_to_col[s] points to the starting column

of the s-th supernode */

} SCformat;

� Both B and X are stored as conventional two-dimensional arrays in column-major order, with

the storage type DN.

typedef struct {

int lda; /* leading dimension */

void *nzval; /* array of size lda-by-ncol to represent

a dense matrix */

} DNformat;

Figure 3 shows the data structures for the example matrices in Figure 1.

3 Permutations

Two permutation matrices are involved in the solution process. In fact, the actual factorization we

perform is PrAP
T
c = LU , where Pr is determined from partial pivoting (with a threshold pivoting

option), and Pc is a column permutation chosen either by the user or SuperLU, usually to make the

L and U factors as sparse as possible. Pr and Pc are represented by two integer vectors perm r[]

and perm c[], which are the permutations of the integers (0 :m� 1) and (0 : n� 1), respectively.

3.1 Ordering for sparsity

Column reordering for sparsity is completely separate from the LU factorization. The column

permutation Pc should be applied before calling the factor routine xGSTRF. In principle, any ordering

heuristic used for symmetric matrices can be applied to ATA (or A + AT if the matrix is nearly

structurally symmetric) to obtain Pc. Currently, we provide the following ordering options through

subroutine get perm c.

void get perm c(int ispec, SuperMatrix *A, int *perm c);

Ispec speci�es the ordering to be returned in *perm c, the integer vector representing the

permutation matrix Pc:

8

� A = { Stype = NC; Dtype = _D; Mtype = GE; nrow = 5; ncol = 5;

*Store = { nnz = 12;

nzval = [19.00, 12.00, 12.00, 21.00, 12.00, 12.00, 21.00,

16.00, 21.00, 5.00, 21.00, 18.00];

rowind = [0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4];

colptr = [0, 3, 6, 8, 10, 12];

}

}

� U = { Stype = NC; Dtype = _D; Mtype = TRU; nrow = 5; ncol = 5;

*Store = { nnz = 4;

nzval = [21.00, 21.00, -13.26, 7.58];

rowind = [0, 0, 1, 2];

colptr = [0, 0, 0, 1, 4, 4];

}

}

� L = { Stype = SC; Dtype = _D; Mtype = TRLU; nrow = 5; ncol = 5;

*Store = { nnz = 13;

nsuper = 2;

nzval = [19.00, 0.63, 0.63, 21.00, 0.57, 0.57, -13.26,

23.58, -0.24, 5.00, -0.77, 21.00, 34.20];

nzval_colptr = [0 3, 6, 9, 11, 13];

rowind = [0, 1, 4, 1, 2, 4, 3, 4];

rowind_colptr = [0, 3, 3, 6, 6, 8];

col_to_sup = [0, 1, 1, 2, 2];

sup_to_col = [0, 1, 3, 5];

}

}

Figure 3: The data structures for a 5 � 5 matrix and its LU factors, as represented in the

SuperMatrix data structure. Zero-based indexing is used.

9

ispec = 0: natural ordering (i.e., Pc = I)

= 1: MMD applied to the structure of ATA

= 2: MMD applied to the structure of A+ AT

The MMD code is due to Joseph W.H. Liu, which implements a variant of the minimum degree

ordering algorithm [7].

Alternatively, users can provide their own column permutation vector. For example, it may be

an ordering suitable for the underlying physical problem. Both driver routines xGSSV and xGSSVX

take perm c[] as an input argument. In the future, we will augment get perm c functionality with

more ordering algorithms, such as approximate minimum degree ordering on the column intersection

graph of A [3].

3.2 Partial pivoting with threshold

We have included a threshold pivoting parameter u 2 [0; 1] to control numerical stability. The

user can choose to use a row permutation obtained from a previous factorization. (The argument

*refact = 'Y' should be passed to the factorization routine xGSTRF.) The pivoting subroutine

xPIVOTL checks whether this choice of pivot satis�es the threshold; if not, it will try the diagonal

element. If neither of the above satis�es the threshold, the maximum magnitude element in the

column will be used as the pivot. The pseudo-code of the pivoting policy for column j is given

below.

(1) compute thresh = u jamj j, where jamj j = maxi�j jaij j;

(2) if user speci�es pivot row k and jakj j � thresh and akj 6= 0 then

pivot row = k;

else if jajj j � thresh and ajj 6= 0 then

pivot row = j;

else

pivot row = m;

endif;

Two special values of u result in the following two strategies:

� u = 0:0: either use user-speci�ed pivot order if available, or else use diagonal pivot;

� u = 1:0: classical partial pivoting.

4 User-callable routines

The naming conventions, calling sequences and functionality of these routines mimic the corre-

sponding LAPACK software [1]. In the routine names, such as xGSTRF, we use the two letters GS to

denote general sparse matrices. The leading letter x stands for S, D, C, or Z, specifying the data

type. Appendix A contains, for each individual routine, the leading comments and the complete

speci�cation of the calling sequence and arguments.

10

4.1 Driver routines

We provide two types of driver routines for solving systems of linear equations.

� A simple driver xGSSV, which solves the system AX = B by factorizing A and overwriting B

with the solution X .

� An expert driver xGSSVX, which, in addition to the above, also performs the following functions

(some of them optionally):

{ solve ATX = B;

{ equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly

scaled;

{ estimate the condition number of A, check for near-singularity, and check for pivot

growth;

{ re�ne the solution and compute forward and backward error bounds.

These driver routines cover all the functionality of the computational routines. We expect that

most users can simply use these driver routines to ful�ll their tasks with no need to bother with

the computational routines.

4.2 Computational routines

Users can invoke the following computational routines, instead of the driver routines, to directly

control the behavior of SuperLU.

� xGSTRF: Factorize.

This implements the �rst-time factorization, or later re-factorization with the same nonzero

pattern. In re-factorizations, the code has the abilitity to use the same column permutation

Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments

control how the LU decomposition and the numerical pivoting should be performed. xGSTRF

can handle non-square matrices.

� xGSTRS: Triangular solve.

This takes the L and U triangular factors, the row and column permutation vectors, and the

right-hand side to compute a solution matrix X of AX = B or ATX = B.

� xGSCON: Estimate condition number.

Given the matrix A and its factors L and U , this estimates the condition number in the

one-norm or in�nity-norm. The algorithm is due to Hager and Higham [6], and is the same

as CONDEST in sparse Matlab.

� xGSEQU/xLAQGS: Equilibrate.

xGSEQU �rst computes the row and column scalings Dr and Dc which would make each row

and each column of the scaled matrix DrADc have equal norm. xLAQGS then applies them to

the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original

A.

11

� xGSRFS: Re�ne solution.

Given A, its factors L and U , and an initial solution X , this does iterative re�nement, using

the same precision as the input data. It also computes forward and backward error bounds

for the re�ned solution.

5 Matlab interface

In the SuperLU/MATLAB subdirectory, we have developed a set of MEX-�les interface to Matlab.

Right now, only the factor routine DGSTRF and the simple driver routine DGSSV are callable by

invoking superlu and lusolve in Matlab, respectively. Superlu and lusolve correspond to the

two Matlab built-in functions lu and n . In Matlab, when you type

help superlu

you will �nd the following description about superlu's functionality and how to use it.

SUPERLU : Supernodal LU factorization

Executive summary:

[L,U,p] = superlu(A) is like [L,U,P] = lu(A), but faster.

[L,U,prow,pcol] = superlu(A) preorders the columns of A by min degree,

yielding A(prow,pcol) = L*U.

Details and options:

With one input and two or three outputs, SUPERLU has the same effect as LU,

except that the pivoting permutation is returned as a vector, not a matrix:

[L,U,p] = superlu(A) returns unit lower triangular L, upper triangular U,

and permutation vector p with A(p,:) = L*U.

[L,U] = superlu(A) returns permuted triangular L and upper triangular U

with A = L*U.

With a second input, the columns of A are permuted before factoring:

[L,U,prow] = superlu(A,psparse) returns triangular L and U and permutation

prow with A(prow,psparse) = L*U.

[L,U] = superlu(A,psparse) returns permuted triangular L and triangular U

with A(:,psparse) = L*U.

Here psparse will normally be a user-supplied permutation matrix or vector

to be applied to the columns of A for sparsity. COLMMD is one way to get

such a permutation; see below to make SUPERLU compute it automatically.

(If psparse is a permutation matrix, the matrix factored is A*psparse'.)

With a fourth output, a column permutation is computed and applied:

[L,U,prow,pcol] = superlu(A,psparse) returns triangular L and U and

permutations prow and pcol with A(prow,pcol) = L*U.

12

Here psparse is a user-supplied column permutation for sparsity,

and the matrix factored is A(:,psparse) (or A*psparse' if the

input is a permutation matrix). Output pcol is a permutation

that first performs psparse, then postorders the etree of the

column intersection graph of A. The postorder does not affect

sparsity, but makes supernodes in L consecutive.

[L,U,prow,pcol] = superlu(A,0) is the same as ... = superlu(A,I); it does

not permute for sparsity but it does postorder the etree.

[L,U,prow,pcol] = superlu(A) is the same as ... = superlu(A,colmmd(A));

it uses column minimum degree to permute columns for sparsity,

then postorders the etree and factors.

For a description about lusolve's functionality and how to use it, you can type

help superlu

LUSOLVE : Solve linear systems by supernodal LU factorization.

x = lusolve(A, b) returns the solution to the linear system A*x = b,

using a supernodal LU factorization that is faster than Matlab's

builtin LU. This m-file just calls a mex routine to do the work.

By default, A is preordered by column minimum degree before factorization.

Optionally, the user can supply a desired column ordering:

x = lusolve(A, b, pcol) uses pcol as a column permutation.

It still returns x = A\b, but it factors A(:,pcol) (if pcol is a

permutation vector) or A*Pcol (if Pcol is a permutation matrix).

x = lusolve(A, b, 0) suppresses the default minimum degree ordering;

that is, it forces the identity permutation on columns.

Two M-�les trysuperlu.m and trylusolve.m are written to test the correctness of superlu

and lusolve. In addition to testing the residual norms, they also test the function invocations

with various number of input/output arguments.

6 Memory management for L and U

In the sparse LU algorithm, the amount of space needed to hold the data structures of L and U

cannot be accurately predicted prior to the factorization. The dynamically growing arrays include

those for the nonzero values (nzval) and the compressed row indices (rowind) of L, and for the

nonzero values (nzval) and the row indices (rowind) of U .

Two alternative memory models are presented to the user:

� system-level { based on C's dynamic allocation capability (malloc/free);

� user-level { based on a user-supplied work[] array of size lwork (in bytes). This is similar to

Fortran-77 style handling of work space. Work[] is organized as a two-ended stack, one end

holding the L and U data structures, the other end holding the auxiliary arrays of known

size.

13

Except for the di�erent ways to allocate/deallocate space, the logical view of the memory

organization is the same for both schemes. Now we describe the policies in the memory module.

At the outset of the factorization, we guess there will be FILL*nnz(A) �lls in the factors and

allocate corresponding storage for the above four arrays, where nnz(A) is the number of nonzeros

in original matrix A, and FILL is an integer, say 20. (The value of FILL can be set in an inquiry

function sp ienv(), see Section 7.3.) If this initial request exceeds the physical memory constraint,

the FILL factor is repeatedly reduced, and attempts are made to allocate smaller arrays, until the

initial allocation succeeds.

During the factorization, if any array size exceeds the allocated bound, we expand it as follows.

We �rst allocate a chunk of new memory of size EXPAND times the old size, then copy the existing

data into the new memory, and then free the old storage. The extra copying is necessary, because the

factorization algorithm requires that each of the aforementioned four data structures be contiguous

in memory. The values of FILL and EXPAND are normally set to 20 and 1.5, respectively. See

xmemory.c for details.

After factorization, we do not garbage-collect the extra space that may have been allocated.

Thus, there will be external fragmentation in the L and U data structures. The settings of FILL and

EXPAND should take into account the trade-o� between the number of expansions and the amount

of fragmentation.

Arrays of known size, such as various column pointers and working arrays, are allocated just

once. All dynamically-allocated working arrays are freed after factorization.

7 Installation

7.1 File structure

The top level SuperLU/ directory is structured as follows:

SuperLU/README instructions on installation

SuperLU/CBLAS/ needed BLAS routines in C, not necessarily fast

SuperLU/EXAMPLE/ example programs

SuperLU/INSTALL/ test machine dependent parameters; this Users' Guide

SuperLU/MATLAB/ Matlab mex-file interface

SuperLU/SRC/ C source code, to be compiled into the superlu.a library

SuperLU/TESTING/ driver routines to test correctness

SuperLU/Makefile top level Makefile that does installation and testing

SuperLU/make.inc compiler, compile flags, library definitions and C

preprocessor definitions, included in all Makefiles.

Before installing the package, you may need to edit SuperLU/make.inc for your system. This

make include �le is referenced inside each of the Makefiles in the various subdirectories. As a

result, there is no need to edit the Makefiles in the subdirectories. All information that is machine

speci�c has been de�ned in make.inc.

Sample machine-speci�c make.inc are provided in the top-level SuperLU/ directory for several

systems, including IBM RS/6000, DEC Alpha, SunOS 4.x, SunOS 5.x (Solaris), HP-PA and SGI

Iris 4.x. When you have selected the machine on which you wish to install SuperLU, you may copy

the appropriate sample include �le (if one is present) into make.inc. For example, if you wish to

run SuperLU on an IBM RS/6000, you can do:

cp make.rs6k make.inc

14

For systems other than those listed above, slight modi�cations to the make.inc �le will need

to be made. In particular, the following three items should be examined:

1. The BLAS library.

If there is a BLAS library available on your machine, you may de�ne the following in make.inc:

BLASDEF = -DUSE VENDOR BLAS

BLASLIB = <BLAS library you wish to link with>

The CBLAS/ subdirectory contains the part of the C BLAS needed by the SuperLU package.

However, these codes are intended for use only if there is no faster implementation of the

BLAS already available on your machine. In this case, you should do the following:

1) In make.inc, de�ne:

BLASLIB = ../blas$(PLAT).a

2) In the SuperLU/ directory, type:

make blaslib

to make the BLAS library from the routines in the CBLAS/ subdirectory.

2. C preprocessor de�nition CDEFS.

In the header �le SRC/Cnames.h, we use macros to determine how C routines should be named

so that they are callable by Fortran.2 The possible options for CDEFS are:

� -DAdd : Fortran expects a C routine to have an underscore post�xed to the name;

� -DNoChange: Fortran expects a C routine name to be identical to that compiled by C;

� -DUpCase: Fortran expects a C routine name to be all uppercase.

3. The Matlab MEX-�le interface.

The MATLAB/ subdirectory includes Matlab C MEX-�les, so that our factor and solve routines

can be called as alternatives to those built into Matlab. In the �le SuperLU/make.inc, de�ne

MATLAB to be the directory in which Matlab is installed on your system, for example:

MATLAB = /usr/local/matlab

At the SuperLU/ directory, type:

make matlabmex

to build the MEX-�le interface. After you have built the interface, you may go to the MATLAB/

subdirectory to test the correctness by typing (in Matlab):

trysuperlu

trylusolve

A Makefile is provided in each subdirectory. The installation can be done completely auto-

matically by simply typing make at the top level.

2Some vendor-supplied BLAS libraries do not have C interface. So the re-naming is needed in order for the
SuperLU BLAS calls (in C) to interface with the Fortran-style BLAS.

15

Matrix type Description

0 sparse matrix g10

1 diagonal

2 upper triangular

3 lower triangular

4 random, � = 2

5 �rst column zero

6 last column zero

7 last n=2 columns zero

8 random, � =
p
0:1="

9 random, � = 0:1="

10 scaled near under
ow

11 scaled near over
ow

Table 1: Properties of the test matrices. " is

the machine epsilon and � is the condition num-

ber of matrix A. Matrix types with one or more

columns set to zero are used to test the error

return codes.

Test ratio Routines

jjLU � Ajj=(njjAjj") xGSTRF

jjb�Axjj=(jjAjj jjxjj") xGSSV, xGSSVX

jjx� x�jj=(jjx�jj�") xGSSVX

jjx� x�jj=(jjx�jj FERR) xGSSVX

BERR=" xGSSVX

Table 2: Types of tests. x� is the exact solu-

tion, FERR is the error bound, and BERR is the

backward error.

7.2 Testing

The test programs in SuperLU/INSTALL subdirectory test two routines:

� SLAMCH/DLAMCH determines properties of the
oating-point arithmetic at run-time (both single

and double precision), such as the machine epsilon, under
ow threshold, over
ow threshold,

and related parameters;

� SuperLU timer () returns the time in seconds used by the process. This function may need

to be modi�ed to run on your machine.

The test programs in the SuperLU/TESTING subdirectory are designed to test all the functions of

the driver routines, especially the expert drivers. The Unix shell script �les xtest.csh are used to

invoke tests with varying parameter settings. The input matrices include an actual sparse matrix

SuperLU/EXAMPLE/g10 of dimension 100 � 100,3 and numerous matrices with special properties

from the LAPACK test suite. Table 1 describes the properties of the test matrices.

For each command line option speci�ed in xtest.csh, the test program xDRIVE reads in or

generates an appropriate matrix, calls the driver routines, and computes a number of test ratios

to verify that each operation has performed correctly. If the test ratio is smaller than a preset

threshold, the operation is considered to be correct. Each test matrix is subject to the tests listed

in Table 2.

Let r be the residual r = b � Ax, and let mi be the number of nonzeros in row i of A. Then

BERR and FERR are calculated by:

BERR = max
i

jrji

(jAj jxj+ jbj)i
:

3Matrix g10 is �rst generated with the structure of the 10-by-10 �ve-point grid, and random numerical values.

The columns are then permutated by COLMMD ordering from Matlab.

16

FERR =
jj jA�1j f jj1

jjxjj1
:

Here, f is a nonnegative vector whose components are computed as fi = jrji+mi " (jAj jxj+jbj)i, and

the norm in the numerator is estimated using the same subroutine used for estimating the condition

number. For further details on error analysis and error bounds estimation, see [1, Chapter 4] and

[2].

7.3 Performance-tuning parameters

SuperLU chooses such machine-dependent parameters as block size by calling an inquiry function

sp ienv(), which may be set to return di�erent values on di�erent machines. The declaration of

this function is

int sp ienv(int ispec);

Ispec speci�es the parameter to be returned, (See reference [4] for their de�nitions.)

ispec = 1: the panel size (w)

= 2: the relaxation parameter to control supernode amalgamation (relax)

= 3: the maximum allowable size for a supernode (maxsuper)

= 4: the minimum row dimension for 2-D blocking to be used (rowblk)

= 5: the minimum column dimension for 2-D blocking to be used (colblk)

= 6: the estimated �lls factor for L and U, compared with A;

Users are encouraged to modify this subroutine to set the tuning parameters for their own local

environment. The optimal values depend mainly on the cache size and the BLAS speed. If your

system has a very small cache, or if you want to e�ciently utilize the closest cache in a multilevel

cache organization, you should pay special attention to these parameter settings. In our technical

paper [4], we described a detailed methodology for setting these parameters for high performance.

The relax parameter is usually set between 4 and 8. The other parameter values which give

good performance on several machines are listed in Table 3. In a supernode-panel update, if the

updating supernode is too large to �t in cache, then a 2-D block partitioning of the supernode is

used, in which rowblk and colblk determine that a block of size rowblk� colblk is used to update

current panel.

If colblk is set greater thanmaxsup, then the program will never use 2-D blocking. For example,

for the Cray J90 (which does not have cache), w = 1 and 1-D blocking give good performance;

more levels of blocking only increase overhead.

7.4 Error handling

A macro ABORT is de�ned in SRC/util.h to handle unrecoverable errors that occur in the middle

of the computation, such as malloc failure. The default action of ABORT is to call

superlu abort and exit(char *msg)

which prints an error message, the line number and the �le name at which the error occurs, and

calls exit function to terminate the program.

If this type of termination is not appropriate in some environment, users can de�ne their own

abort function. When compiling the SuperLU library, users choose the C preprocessor de�nition

-DUSER ABORT = my abort

At the same time, users supply the following my abort function

17

On-chip External

Machine Cache Cache w maxsup rowblk colblk

RS/6000-590 256 KB { 8 100 200 40

MIPS R8000 16 KB 4 MB 20 100 800 100

Alpha 21064 8 KB 512 KB 8 100 400 40

Alpha 21164 8 KB-L1 4 MB 16 50 100 40

96 KB-L2

Sparc 20 16 KB 1 MB 8 100 400 50

UltraSparc-I 16 KB 512 KB 8 100 400 40

Cray J90 { { 1 100 1000 101

Table 3: Typical blocking parameter values for several machines.

my abort(char *msg)

which overrides the behavior of superlu abort and exit.

8 Statistics

SuperLU internally records some performance statistics, such as
oating-point operation counts

and the time taken by factorization. A variable SuperLUStat is declared with the following type.

typedef struct {

int *panel_histo; /* histogram of panel size distribution */

double *utime; /* time spent in various phases */

float *ops; /* float-point operation count in various phases */

} SuperLUStat_t;

In the beginning of both driver routines xGSSV and xGSSVX, subroutine StatInit is called to

allocate storage and perform initialization for the �elds panel histo, utime, and ops. In the end

of the driver routines, subroutine StatFree is called to deallocate storage of the above statistics

�elds. After deallocation, the statistics are no longer accessible. Therefore, users should extract

the information they need before calling StatFree.

An inquiry function xQuerySpace is provided to compute memory usage statistics. This routine

should be called after the LU factorization. It calculates the storage requirement based on the size

of the L and U data structures and working arrays.

9 Example programs

In the SuperLU/EXAMPLE/ subdirectory, we present a few sample programs, such as xLINSOL and

xLINSOLX, to illustrate the complete calling sequences used to solve systems of equations. These

include how to set up the matrix structures, how to obtain a �ll-reducing ordering, and how to call

driver routines. A Makefile is provided to generate the executables. A README �le in this directory

shows how to run these examples.

Based on these sample programs, we now illustrate how we may use SuperLU in some other

ways.

18

main()

{

/* Declare variables */

SuperMatrix A; /* original matrix */

SuperMatrix AC; /* A postmultiplied by a permutation matrix Q */

char refact[1];

...... /* declarations of other variables */

/* Initialization */

{

StatInit(panel_size, relax);

......

}

/* First-time factorization */

*refact = 'N';

/* Obtain and apply column permutation */

get_perm_c(1, &A, perm_c);

sp_preorder(refact, &A, perm_c, etree, &AC);

/* Factorization */

dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size,

etree, NULL, 0, perm_r, &L, &U, &info);

...... /* solve first system */

/* Subsequent factorizations */

*refact = 'Y';

for (i = 1; i <= niter; ++i) {

dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size,

etree, NULL, 0, perm_r, &L, &U, &info);

/* Numerical values of matrix AC may change across iterations.

The factors L and U are overwritten in each iteration. */

{

...... /* solve later system */

}

}

StatFree();

}

Figure 4: Code segment to perform repeated factorizations.

19

9.1 Repeated factorizations

In many iterative processes, matrices with the same sparsity pattern but di�erent numerical

values must be factored repeatedly. Thus, computing a �ll-reducing ordering and performing col-

umn permutation are needed only once. In addition, the memory for L and U can be allocated

only once, and re-used in the subsequent factorizations. If there is not enough space for L and U

from the previous factorization (due to di�erent pivoting), the factor routines xGSTRF automatically

expand memory as needed. Figure 4 shows the code segment for this purpose.

9.2 Calling from Fortran

General rules for mixing Fortran and C programs are as follows.

� Arguments in C are passed by value, while in Fortran are passed by reference. So we always

pass the address (as a pointer) in the C calling routine. (You cannot make a call with numbers

directly in the parameters.)

� Fortran uses 1-based array addressing, while C uses 0-based. Therefore, the row indices

(rowind) and integer pointers to arrays (colptr) should be adjusted before they are passed

into a C routine.

Because of the above language di�erences, in order to embed SuperLU in a Fortran environment,

users are required to supply \bridge" routines (in C) for all the SuperLU subroutines that will be

called from Fortran programs. Figure 5 is an example showing how a bridge program should be

written. See the �les f77 main.f and c bridge dgssv.c for complete descriptions.

In the future, we will provide complete Fortran interfaces to the user-callable routines in the

SuperLU library.

10 Acknowledgement

We would like to thank Jinqchong Teo for helping generate the code to work with four
oating-point

data types. We also thank Sivan Toledo for suggestions on improving the routines' interfaces.

20

Fortran program (f77_main.f)

~~~~~~~~~~~~~~~

program f77_main

integer maxn, maxnz

parameter ( maxn = 10000, maxnz = 100000 )

integer rowind(maxnz), colptr(maxn)

real*8 values(maxnz), b(maxn)

......

call c_bridge_dgssv( n, nnz, nrhs, values, rowind, colptr, b, ldb, info )

......

stop

end

The bridge program in C (c_bridge_dgssv.c)

~~~~~~~~~~~~~~~~~~~~~~~

int c_bridge_dgssv(int *n, int *nnz, int *nrhs, double *values, int *rowind,

int *colptr, double *b, int *ldb, int *info)

{

SuperMatrix A, B, L, U;

int *perm_c, *perm_r;

......

/* Adjust to 0-based indexing */

for (i = 0; i < *nnz; ++i) --rowind[i];

for (i = 0; i <= *n; ++i) --colptr[i];

/* Construct Matrix structures A and B */

dCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,

NC, _D, GE);

dCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, DN, _D, GE);

......

/* B is overwritten by the solution vector */

dgssv(&A, perm_c, perm_r, &L, &U, &B, info);

......

}

Figure 5: Interface with Fortran

21

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Release 2.0.

SIAM, Philadelphia, 1995. 324 pages.

[2] M. Arioli, J. W. Demmel, and I. S. Du�. Solving sparse linear systems with sparse backward

error. SIAM J. Matrix Anal. Appl., 10(2):165{190, April 1989.

[3] Timothy A. Davis, John R. Gilbert, Esmond Ng, and Barry Peyton. Approximate minimum

degree ordering for unsymmetric matrices. Talk presented at XIII Householder Symposium on

Numerical Algebra, June 1996. Journal version in preparation.

[4] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W.H.

Liu. A supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-95-

883, Computer Science Division, U.C. Berkeley, July 1995. (Xerox PARC report CSL-95-03,

LAPACK Working Note #103).

[5] I.S Du�, R.G Grimes, and J.G Lewis. Users' guide for the harwell-boeing sparse matrix col-

lection (release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December

1992.

[6] N. J. Higham. Algorithm 674: FORTRAN codes for estimating the one-norm of a real or

complex matrix, with applications to condition estimation. ACM Trans. Math. Soft., 14:381{

396, 1988.

[7] Joseph W.H. Liu. Modi�cation of the minimum degree algorithm by multiple elimination. ACM

Trans. Math. Software, 11:141{153, 1985.

22

A Speci�cations of routines

A.1 SGSEQU

void

sgsequ(SuperMatrix *A, float *r, float *c, float *rowcnd,

float *colcnd, float *amax, int *info)

Purpose

=======

SGSEQU computes row and column scalings intended to equilibrate an

M-by-N sparse matrix A and reduce its condition number. R returns the

row scale factors and C the column scale factors, chosen to try to make

the largest element in each row and column of the matrix B with

elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

R(i) and C(j) are restricted to be between SMLNUM = smallest safe

number and BIGNUM = largest safe number. Use of these scaling

factors is not guaranteed to reduce the condition number of A but

works well in practice.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

A (input) SuperMatrix*

The matrix of dimension (A->nrow, A->ncol) whose equilibration

factors are to be computed. The type of A can be:

Stype = NC; Dtype = _S; Mtype = GE.

R (output) float*, dimension (A->nrow)

If INFO = 0 or INFO > M, R contains the row scale factors

for A.

C (output) float*, dimension (A->ncol)

If INFO = 0, C contains the column scale factors for A.

rowcnd (output) float*

If INFO = 0 or INFO > M, ROWCND contains the ratio of the

smallest R(i) to the largest R(i). If ROWCND >= 0.1 and

AMAX is neither too large nor too small, it is not worth

scaling by R.

colcnd (output) float*

If INFO = 0, COLCND contains the ratio of the smallest

C(i) to the largest C(i). If COLCND >= 0.1, it is not

23

worth scaling by C.

amax (output) float*

Absolute value of largest matrix element. If AMAX is very

close to overflow or very close to underflow, the matrix

should be scaled.

info (output) int*

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, and i is

<= M: the i-th row of A is exactly zero

> M: the (i-M)-th column of A is exactly zero

A.2 SGSCON

void

sgscon(char *norm, SuperMatrix *L, SuperMatrix *U,

float anorm, float *rcond, int *info)

Purpose

=======

SGSCON estimates the reciprocal of the condition number of a general

real matrix A, in either the 1-norm or the infinity-norm, using

the LU factorization computed by SGETRF.

An estimate is obtained for norm(inv(A)), and the reciprocal of the

condition number is computed as

RCOND = 1 / (norm(A) * norm(inv(A))).

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

NORM (input) char*

Specifies whether the 1-norm condition number or the

infinity-norm condition number is required:

= '1' or 'O': 1-norm;

= 'I': Infinity-norm.

A (input) SuperMatrix*

The original matrix, or equilibrated matrix.

L (input) SuperMatrix*

The factor L from the factorization Pr*A*Pc=L*U as computed by

24

SGSTRF. Use compressed row subscripts storage for supernodes,

i.e., L has types: Stype = SC, Dtype = _S, Mtype = TL.

U (input) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U as computed by

SGSTRF. Use column-wise storage scheme, i.e., U has types:

Stype = NC, Dtype = _S, Mtype = TU.

anorm (input) float

If NORM = '1' or 'O', the 1-norm of the original matrix A.

If NORM = 'I', the infinity-norm of the original matrix A.

rcond (output) float*

The reciprocal of the condition number of the matrix A,

computed as RCOND = 1/(norm(A) * norm(inv(A))).

info (output) int*

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

A.3 SGSRFS

void

sgsrfs(char *trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,

int *perm_r, int *perm_c, char *equed, float *R, float *C,

SuperMatrix *B, SuperMatrix *X, float *ferr, float *berr, int *info)

Purpose

=======

SGSRFS improves the computed solution to a system of linear

equations and provides error bounds and backward error estimates for

the solution.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

trans (input) char*

Specifies the form of the system of equations:

= 'N': A * X = B (No transpose)

= 'T': A**T * X = B (Transpose)

= 'C': A**H * X = B (Conjugate transpose = Transpose)

A (input) SuperMatrix*

25

The original matrix A in the system, or the scaled A if

equilibration was done.

L (input) SuperMatrix*

The factor L from the factorization Pr*A*Pc=L*U. Use

compressed row subscripts storage for supernodes,

i.e., L has types: Stype = SC, Dtype = _S, Mtype = TL.

U (input) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U as computed by

SGSTRF. Use column-wise storage scheme,

i.e., U has types: Stype = NC, Dtype = _S, Mtype = TU.

perm_r (input) int*, dimension (A->nrow)

Row permutation vector, which defines the permutation matrix Pr;

perm_r[i] = j means row i of A is in position j in Pr*A.

perm_c (input) int*, dimension (A->ncol)

Column permutation vector, which defines the

permutation matrix Pc; perm_c[i] = j means column i of A is

in position j in A*Pc.

equed (input) Specifies the form of equilibration that was done.

= 'N': No equilibration.

= 'R': Row equilibration, i.e., A was premultiplied by diag(R).

= 'C': Column equilibration, i.e., A was postmultiplied by

diag(C).

= 'B': Both row and column equilibration, i.e., A was replaced

by diag(R)*A*diag(C).

R (input) float*, dimension (A->nrow)

The row scale factors for A.

If equed = 'R' or 'B', A is premultiplied by diag(R).

If equed = 'N' or 'C', R is not accessed.

C (input) float*, dimension (A->ncol)

The column scale factors for A.

If equed = 'C' or 'B', A is postmultiplied by diag(C).

If equed = 'N' or 'R', C is not accessed.

B (input) SuperMatrix*

B has types: Stype = DN, Dtype = _S, Mtype = GE.

The right hand side matrix B.

X (input/output) SuperMatrix*

X has types: Stype = DN, Dtype = _S, Mtype = GE.

On entry, the solution matrix X, as computed by sgstrs().

26

On exit, the improved solution matrix X.

FERR (output) float*, dimension (B->ncol)

The estimated forward error bound for each solution vector

X(j) (the j-th column of the solution matrix X).

If XTRUE is the true solution corresponding to X(j), FERR(j)

is an estimated upper bound for the magnitude of the largest

element in (X(j) - XTRUE) divided by the magnitude of the

largest element in X(j). The estimate is as reliable as

the estimate for RCOND, and is almost always a slight

overestimate of the true error.

BERR (output) float*, dimension (B->ncol)

The componentwise relative backward error of each solution

vector X(j) (i.e., the smallest relative change in

any element of A or B that makes X(j) an exact solution).

info (output) int*

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

A.4 SGSSV

void

sgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,

SuperMatrix *U, SuperMatrix *B, int *info)

Purpose

=======

SGSSV solves the system of linear equations A*X=B, using the

LU factorization from SGSTRF. It performs the following steps:

1. Permute columns of A, forming A*Pc, where Pc is a permutation matrix.

For more details of this step, see sp_preorder.c.

2. Factor A as Pr*A*Pc=L*U using LU decomposition with Pr determined

by partial pivoting.

3. Solve the system of equations A*X=B using the factored form of A.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

27

A (input) SuperMatrix*

Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number

of linear equations is A->nrow. Currently, the type of A can be:

Stype = NC; Dtype = _S; Mtype = GE. In the future, more

general A can be handled.

perm_c (input/output) int*, dimension (A->ncol)

Column permutation vector, which defines the

permutation matrix Pc; perm_c[i] = j means column i of A is

in position j in A*Pc.

On exit, perm_c may be overwritten by the product of the input

perm_c and a permutation that postorders the elimination tree

of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree

is already in postorder.

perm_r (output) int*, dimension (A->nrow)

Row permutation vector, which defines the

permutation matrix Pr, and is determined by partial pivoting;

perm_r[i] = j means row i of A is in position j in Pr*A.

L (output) SuperMatrix*

The factor L from the factorization Pr*A*Pc=L*U. Use

compressed row subscripts storage for supernodes, i.e., L

has types: Stype = SC, Dtype = _S, Mtype = TL.

U (output) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U. Use column-wise

storage scheme, i.e., U has types: Stype = NC, Dtype = _S,

Mtype = TU.

B (input/output) SuperMatrix*

B has types: Stype = DN, Dtype = _S, Mtype = GE.

On entry, the right hand side matrix.

On exit, the solution matrix if info = 0;

info (output) int*

= 0: successful exit

> 0: if info = i, and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has

been completed, but the factor U is exactly singular,

so the solution could not be computed.

> A->ncol: number of bytes allocated when memory allocation

failure occurred, plus A->ncol.

A.5 SGSSVX

28

void

sgssvx(char *fact, char *trans, char *refact, SuperMatrix *A,

factor_param_t *factor_params, int *perm_c, int *perm_r, int *etree,

char *equed, float *R, float *C, SuperMatrix *L, SuperMatrix *U,

void *work, int lwork, SuperMatrix *B, SuperMatrix *X,

float *recip_pivot_growth, float *rcond, float *ferr, float *berr,

mem_usage_t *mem_usage, int *info)

Purpose

=======

SGSSVX solves the system of linear equations A*X=B or A'*X=B, using

the LU factorization from SGSTRF. Error bounds on the solution and

a condition estimate are also provided. It performs the following steps:

1. If fact = 'E', scaling factors are computed to equilibrate the system:

trans = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B

trans = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B

trans = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B

Whether or not the system will be equilibrated depends on the

scaling of the matrix A, but if equilibration is used, A is

overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N')

or diag(C)*B (if trans = 'T' or 'C').

2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix

that usually preserves sparisity.

For more details of this step, see sp_preorder.c.

3. If fact = 'N' or 'E', the LU decomposition is used to factor the

matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U,

with Pr determined by partial pivoting.

4. Compute the reciprocal pivot growth factor.

5. If some U(i,i) = 0, so that U is exactly singular, then the routine

returns with info = i. Otherwise, the factored form of A is used to

estimate the condition number of the matrix A. If the reciprocal of

the condition number is less than machine precision, info = A->ncol+1

is returned as a warning, but the routine still goes on to solve

for X and computes error bounds as described below.

6. The system of equations is solved for X using the factored form of A.

7. Iterative refinement is applied to improve the computed solution matrix

and calculate error bounds and backward error estimates for it.

8. If equilibration was used, the matrix X is premultiplied by

29

diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so

that it solves the original system before equilibration.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

fact (input) char*

Specifies whether or not the factored form of the matrix

A is supplied on entry, and if not, whether the matrix A should

be equilibrated before it is factored.

= 'F': On entry, L, U, perm_r and perm_c contain the factored

form of A. If equed is not 'N', the matrix A has been

equilibrated with scaling factors R and C.

A, L, U, perm_r are not modified.

= 'N': The matrix A will be factored, and the factors will be

stored in L and U.

= 'E': The matrix A will be equilibrated if necessary, then

factored into L and U.

trans (input) char*

Specifies the form of the system of equations:

= 'N': A * X = B (No transpose)

= 'T': A**T * X = B (Transpose)

= 'C': A**H * X = B (Transpose)

refact (input) char*

Specifies whether we want to re-factor the matrix.

= 'N': Factor the matrix A.

= 'Y': Matrix A was factored before, now we want to re-factor

matrix A with perm_r and etree as inputs. Use

the same storage for the L\U factors previously allocated,

expand it if necessary. User should insure to use the same

memory model.

If fact = 'F', then refact is not accessed.

A (input) SuperMatrix*

Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number of

the linear equations is A->nrow. Currently, the type of A can be:

Stype = NC; Dtype = _S; Mtype = GE.

In the future, more general A may be handled.

factor_params (input) factor_param_t*

The structure defines the input scalar parameters, consisting of

the following fields. If factor_params = NULL, the default

values are used for all the fields; otherwise, the values

30

are given by the user.

- panel_size (int): Panel size. A panel consists of at most

panel_size consecutive columns. If panel_size = -1, use

default value 8.

- relax (int): To control degree of relaxing supernodes. If the

number of nodes (columns) in a subtree of the elimination

tree is less than relax, this subtree is considered as one

supernode, regardless of the row structures of those columns.

If relax = -1, use default value 8.

- diag_pivot_thresh (float): Diagonal pivoting threshold.

At step j of the Gaussian elimination, if

abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),

then use A_jj as pivot. 0 <= diag_pivot_thresh <= 1.

If diag_pivot_thresh = -1, use default value 1.0,

which corresponds to standard partial pivoting.

- drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED)

At step j of the Gaussian elimination, if

abs(A_ij)/(max_i abs(A_ij)) < drop_tol,

then drop entry A_ij. 0 <= drop_tol <= 1.

If drop_tol = -1, use default value 0.0, which corresponds to

standard Gaussian elimination.

perm_c (input/output) int*, dimension (A->ncol)

Column permutation vector, which defines the

permutation matrix Pc; perm_c[i] = j means column i of A is

in position j in A*Pc.

On exit, perm_c may be overwritten by the product of the input

perm_c and a permutation that postorders the elimination tree

of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree

is already in postorder.

perm_r (input/output) int*, dimension (A->nrow)

Row permutation vector, which defines the permutation matrix Pr;

perm_r[i] = j means row i of A is in position j in Pr*A.

If refact is not 'Y', perm_r is output argument;

If refact = 'Y', the pivoting routine will try to use the input

perm_r, unless a certain threshold criterion is violated.

In that case, perm_r is overwritten by a new permutation

determined by partial pivoting or diagonal threshold pivoting.

etree (input/output) int*, dimension (A->ncol)

Elimination tree of Pc'*A'*A*Pc.

If fact is not 'F' and refact = 'Y', etree is an input argument,

otherwise it is an output argument.

Note: etree is a vector of parent pointers for a forest whose

vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.

31

equed (input/output) char*

Specifies the form of equilibration that was done.

= 'N': No equilibration.

= 'R': Row equilibration, i.e., A was premultiplied by diag(R).

= 'C': Column equilibration, i.e., A was postmultiplied by diag(C).

= 'B': Both row and column equilibration, i.e., A was replaced

by diag(R)*A*diag(C).

If fact = 'F', equed is an input argument, otherwise it is

an output argument.

R (input/output) float*, dimension (A->nrow)

The row scale factors for A.

If equed = 'R' or 'B', A is multiplied on the left by diag(R).

If equed = 'N' or 'C', R is not accessed.

If fact = 'F', R is an input argument; otherwise, R is output.

If fact = 'F' and equed = 'R' or 'B', each element of R must

be positive.

C (input/output) float*, dimension (A->ncol)

The column scale factors for A.

If equed = 'C' or 'B', A is multiplied on the right by diag(C).

If equed = 'N' or 'R', C is not accessed.

If fact = 'F', C is an input argument; otherwise, C is output.

If fact = 'F' and equed = 'C' or 'B', each element of C must

be positive.

L (output) SuperMatrix*

The factor L from the factorization Pr*A*Pc=L*U. Use

compressed row subscripts storage for supernodes, i.e., L

has types: Stype = SC, Dtype = _S, Mtype = TL.

U (output) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U. Use column-wise

storage scheme, i.e., U has types: Stype = NC, Dtype = _S,

Mtype = TU.

work (workspace/output) void*, size (lwork) (in bytes)

User supplied workspace, should be large enough

to hold data structures for factors L and U.

On exit, if fact is not 'F', L and U point to this array.

lwork (input) int

Specifies the size of work array in bytes.

= 0: allocate space internally by system malloc;

> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.

= -1: the routine guesses the amount of space needed without

32

performing the factorization, and returns it in

mem_usage->total_needed; no other side effects.

See argument 'mem_usage' for memory usage statistics.

B (input/output) SuperMatrix*

B has types: Stype = DN, Dtype = _S, Mtype = GE.

On entry, the right hand side matrix.

On exit,

if equed = 'N', B is not modified;

if trans = 'N' and equed = 'R' or 'B', B is overwritten by

diag(R)*B;

if trans = 'T' or 'C' and equed = 'C' of 'B', B is

overwritten by diag(C)*B.

X (output) SuperMatrix*

X has types: Stype = DN, Dtype = _S, Mtype = GE.

If info = 0 or info = A->ncol+1, X contains the solution matrix

to the original system of equations. Note that A and B are modified

on exit if equed is not 'N', and the solution to the equilibrated

system is inv(diag(C))*X if trans = 'N' and equed = 'C' or 'B',

or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.

recip_pivot_growth (output) float*

The reciprocal pivot growth factor max_j(norm(A_j)/norm(U_j)).

The infinity norm is used. If recip_pivot_growth is much less

than 1, the stability of the LU factorization could be poor.

rcond (output) float*

The estimate of the reciprocal condition number of the matrix A

after equilibration (if done). If rcond is less than the machine

precision (in particular, if rcond = 0), the matrix is singular

to working precision. This condition is indicated by a return

code of info > 0.

FERR (output) float*, dimension (B->ncol)

The estimated forward error bound for each solution vector

X(j) (the j-th column of the solution matrix X).

If XTRUE is the true solution corresponding to X(j), FERR(j)

is an estimated upper bound for the magnitude of the largest

element in (X(j) - XTRUE) divided by the magnitude of the

largest element in X(j). The estimate is as reliable as

the estimate for RCOND, and is almost always a slight

overestimate of the true error.

BERR (output) float*, dimension (B->ncol)

The componentwise relative backward error of each solution

33

vector X(j) (i.e., the smallest relative change in

any element of A or B that makes X(j) an exact solution).

mem_usage (output) mem_usage_t*

Record the memory usage statistics, consisting of following fields:

- for_lu (float)

The amount of space used in bytes for L\U data structures.

- total_needed (float)

The amount of space needed in bytes to perform factorization.

- expansions (int)

The number of memory expansions during the LU factorization.

info (output) int*

= 0: successful exit

< 0: if info = -i, the i-th argument had an illegal value

> 0: if info = i, and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has

been completed, but the factor U is exactly

singular, so the solution and error bounds

could not be computed.

= A->ncol+1: U is nonsingular, but RCOND is less than machine

precision, meaning that the matrix is singular to

working precision. Nevertheless, the solution and

error bounds are computed because there are a number

of situations where the computed solution can be more

accurate than the value of RCOND would suggest.

> A->ncol+1: number of bytes allocated when memory allocation

failure occurred, plus A->ncol.

A.6 SGSTRF

void

sgstrf(char *refact, SuperMatrix *A, float diag_pivot_thresh, float drop_tol,

int relax, int panel_size, int *etree, void *work, int lwork,

int *perm_r, int *perm_c, SuperMatrix *L, SuperMatrix *U, int *info)

Purpose

=======

SGSTRF computes an LU factorization of a general sparse m-by-n

matrix A using partial pivoting with row interchanges.

The factorization has the form

Pr * A = L * U

where Pr is a row permutation matrix, L is lower triangular with unit

diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper

triangular (upper trapezoidal if A->nrow < A->ncol).

34

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

refact (input) char*

Specifies whether we want to use perm_r from a previous factor.

= 'Y': re-use perm_r; perm_r is input, unchanged on exit.

= 'N': perm_r is determined by partial pivoting, and output.

A (input) SuperMatrix*

Original matrix A, permuted by columns, of dimension

(A->nrow, A->ncol). The type of A can be:

Stype = NCP; Dtype = D; Mtype = GE.

diag_pivot_thresh (input) float

Diagonal pivoting threshold. At step j of the Gaussian elimination,

if abs(A_jj) >= thresh * (max_(i>=j) abs(A_ij)), use A_jj as pivot.

0 <= thresh <= 1. The default value of thresh is 1, corresponding

to partial pivoting.

drop_tol (input) float (NOT IMPLEMENTED)

Drop tolerance parameter. At step j of the Gaussian elimination,

if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.

0 <= drop_tol <= 1. The default value of drop_tol is 0.

relax (input) int

To control degree of relaxing supernodes. If the number

of nodes (columns) in a subtree of the elimination tree is less

than relax, this subtree is considered as one supernode,

regardless of the row structures of those columns.

panel_size (input) int

A panel consists of at most panel_size consecutive columns.

etree (input) int*, dimension (A->ncol)

Elimination tree of A'*A

Note: etree is a vector of parent pointers for a forest whose

vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.

On input, the columns of A should be permuted so that the

etree is in a certain postorder.

work (input/output) void*, size (lwork) (in bytes)

User-supplied work space and space for the output data structures.

Not referenced if lwork = 0;

35

lwork (input) int

Specifies the size of work array in bytes.

= 0: allocate space internally by system malloc;

> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.

= -1: the routine guesses the amount of space needed without

performing the factorization, and returns it in

*info; no other side effects.

perm_r (input/output) int*, dimension (A->nrow)

Row permutation vector which defines the permutation matrix Pr;

perm_r[i] = j means row i of A is in position j in Pr*A.

If refact is not 'Y', perm_r is output argument;

If refact = 'Y', the pivoting routine will try to use the input

perm_r, unless a certain threshold criterion is violated.

In that case, perm_r is overwritten by a new permutation

determined by partial pivoting or diagonal threshold pivoting.

perm_c (input) int*, dimension (A->ncol)

Column permutation vector, which defines the

permutation matrix Pc; perm_c[i] = j means column i of A is

in position j in A*Pc.

When searching for diagonal, perm_c[*] is applied to the

row subscripts of A, so that diagonal threshold pivoting

can find the diagonal of A, rather than that of A*Pc.

L (output) SuperMatrix*

The factor L from the factorization Pr*A=L*U; use compressed row

subscripts storage for supernodes, i.e., L has type:

Stype = SC, Dtype = _S, Mtype = TL.

U (output) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U. Use column-wise

storage scheme, i.e., U has types: Stype = NC, Dtype = _S,

Mtype = TU.

info (output) int*

= 0: successful exit

< 0: if info = -i, the i-th argument had an illegal value

> 0: if info = i, and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has

been completed, but the factor U is exactly singular,

and division by zero will occur if it is used to solve a

system of equations.

> A->ncol: number of bytes allocated when memory allocation

failure occurred, plus A->ncol. If lwork = -1, it is

the estimated amount of space needed, plus A->ncol.

36

A.7 SGSTRS

void

sgstrs(char *trans, SuperMatrix *L, SuperMatrix *U,

int *perm_r, int *perm_c, SuperMatrix *B, int *info)

Purpose

=======

SGSTRS solves a system of linear equations A*X=B or A'*X=B

with A sparse and B dense, using the LU factorization computed by

sgstrf().

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

trans (input) Specifies the form of the system of equations:

= 'N': A * X = B (No transpose)

= 'T': A'* X = B (Transpose)

L (input) SuperMatrix*

The factor L from the factorization Pr*A*Pc=L*U as computed by

sgstrf(). Use compressed row subscripts storage for supernodes,

i.e., L has types: Stype = SC, Dtype = _S, Mtype = TL.

U (input) SuperMatrix*

The factor U from the factorization Pr*A*Pc=L*U as computed by

sgstrf(). Use column-wise storage scheme, i.e., U has types:

Stype = NC, Dtype = _S, Mtype = TU.

perm_r (input) int*, dimension (L->nrow)

Row permutation vector, which defines the permutation matrix Pr;

perm_r[i] = j means row i of A is in position j in PrA.

perm_c (input) int*, dimension (L->ncol)

Column permutation vector, which defines the

permutation matrix Pc; perm_c[i] = j means column i of A is

in position j in A*Pc.

B (input/output) SuperMatrix*

B has types: Stype = DN, Dtype = _S, Mtype = GE.

On entry, the right hand side matrix.

On exit, the solution matrix if info = 0;

37

info (output) int*

= 0: successful exit

< 0: if info = -i, the i-th argument had an illegal value

A.8 SLAQGS

void

slaqgs(SuperMatrix *A, float *r, float *c, float rowcnd, float colcnd,

float amax, char *equed)

Purpose

=======

SLAQGS equilibrates a general sparse M by N matrix A using the row and

scaling factors in the vectors R and C.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

=========

A (input/output) SuperMatrix*

On exit, the equilibrated matrix. See EQUED for the form of

the equilibrated matrix. The type of A can be:

Stype = NC; Dtype = _S; Mtype = GE.

R (input) float*, dimension (A->nrow)

The row scale factors for A.

C (input) float*, dimension (A->ncol)

The column scale factors for A.

rowcnd (input) float

Ratio of the smallest R(i) to the largest R(i).

colcnd (input) float

Ratio of the smallest C(i) to the largest C(i).

amax (input) float

Absolute value of largest matrix entry.

equed (output) char*

Specifies the form of equilibration that was done.

= 'N': No equilibration

= 'R': Row equilibration, i.e., A has been premultiplied by

38

diag(R).

= 'C': Column equilibration, i.e., A has been postmultiplied

by diag(C).

= 'B': Both row and column equilibration, i.e., A has been

replaced by diag(R) * A * diag(C).

39

