LAPACK Quick	Simple Drivers	Simple Driver	• Routines 1	for Lir	ıear Equat	tions				
	Matrix Type	Routine								
	General	SGESV(N,	NRHS,	A, LDA,	IPIV,	B, LI	в,		INFO)
Roforonco Cuido		CGESV (N,	NRHS,	A, LDA,	IPIV,	B, LD	В,		INFO)
Reference Guide	General Band	SGBSV (N, KL, KU,	NRHS,	AB, LDAB,	IPIV,	B, LI)В,		INFO)
		CGBSV (N, KL, KU,	NRHS,	AB, LDAB,	IPIV,	B, LD	В,		INFO)
	General Tridiagonal	SGTSV(N,	NRHS,	DL, D, DU	,	B, LI)В,		INFO)
to the		CGTSV (N,	NRHS,	DL, D, DU	,	B, LI	В,		INFO)
	${ m Symmetric}/{ m Hermitian}$	SPOSV(UPLO,	N,	NRHS,	A, LDA,		B, LI)В,		INFO)
	Positive Definite	CPOSV(UPLO,	N,	NRHS,	A, LDA,		B, LI	В,		INFO)
	${ m Symmetric}/{ m Hermitian}$	SPPSV(UPLO,	N,	NRHS,	AP,		B, LI)В,		INFO)
Drivor Routinos	Positive Definite (Packed Storage)	CPPSV(UPLO,	N,	NRHS,	AP,		B, LI	В,		INFO)
Diver itoutilles	${ m Symmetric}/{ m Hermitian}$	SPBSV(UPLO,	N, KD,	NRHS,	AB, LDAB,		B, LI)В,		INFO)
	Positive Definite Band	CPBSV(UPLO,	N, KD,	NRHS,	AB, LDAB,		B, LI	В,		INFO)
	${ m Symmetric}/{ m Hermitian}$	SPTSV(N,	NRHS,	D, E,		B, LI)В,		INFO)
	Positive Definite Tridiagonal	CPTSV(N,	NRHS,	D, E,		B, LI	В,		INFO)
Release 2.0	${ m Symmetric}/{ m Hermitian}$	SSYSV(UPLO,	N,	NRHS,	A, LDA,	IPIV,	B, LI	B, WORK,	LWORK,	INFO)
	Indefinite	CSYSV(UPLO,	N,	NRHS,	A, LDA,	IPIV,	B, LI	B, WORK,	LWORK,	INFO)
		CHESV(UPLO,	N,	NRHS,	A, LDA,	IPIV,	B, LI	B, WORK,	LWORK,	INFO)
	${ m Symmetric/Hermitian}$	SSPSV(UPLO,	N,	NRHS,	AP,	IPIV,	B, LI)В,		INFO)
	Indefinite (Packed Storage)	CSPSV(UPLO,	N,	NRHS,	AP,	IPIV,	B, LI	в,		INFO)
		CHPSV(UPLO,	N,	NRHS,	AP,	IPIV,	B, LI	/В,		INFO)

Simple Driver Routines for Standard and Generalized Linear Least Squares Problems

Problem Type	Routine														
Solve Using Orthogonal Factor,	SGELS(TRANS,	Μ,	N,	NRHS,	A,	LDA,	Β,	LDB,				WORK,	LWORK,	INFO)
Assuming Full Rank	CGELS(TRANS,	Μ,	N,	NRHS,	A,	LDA,	Β,	LDB,				WORK,	LWORK,	INFO)
Solve LSE Problem Using GRQ	SGGLSE(М,	N,	Ρ,	A,	LDA,	В,	LDB,	С,	D,	Х,	WORK,	LWORK,	INFO)
	CGGLSE(Μ,	N,	Ρ,	Α,	LDA,	Β,	LDB,	С,	D,	Х,	WORK,	LWORK,	INFO)
Solve GLM Problem Using GQR	SGGGLM(N,	Μ,	Ρ,	A,	LDA,	В,	LDB,	D,	Х,	Υ,	WORK,	LWORK,	INFO)
	CGGGLM(N,	Μ,	Ρ,	A,	LDA,	В,	LDB,	D,	Х,	Υ,	WORK,	LWORK,	INFO)

Simple and Divide and Conquer Driver Routines for Standard Eigenvalue and Singular Value Problems

Matrix/Problem Type	Routine						
Symmetric/Hermitian	SSYEV(JOBZ, UPLO,	N,	A, LDA,	W,		WORK, LWORK,	INFO)
Eigenvalues/vectors	CHEEV(JOBZ, UPLO,	N,	A, LDA,	W,		WORK, LWORK, RWORK,	INFO)
Divide and Conquer	SSYEVD(JOBZ, UPLO,	N,	A, LDA,	W,		WORK, LWORK, LIWORK, LIWORK,	INFO)
	CHEEVD(JOBZ, UPLO,	N,	A, LDA,	W,		WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,	INFO)
Symmetric/Hermitian	SSPEV(JOBZ, UPLO,	Ν,	AP,	W,	Z, LDZ,	WORK,	INFO)
(Packed Storage) Eigenvalues/vectors	CHPEV(JOBZ, UPLO,	Ν,	AP,	W,	Z, LDZ,	WORK, RWORK,	INFO)
Divide and Conquer	SSPEVD(JOBZ, UPLO,	N,	AP,	W,	Z, LDZ,	WORK, LWORK, LIWORK,	INFO)
	CHPEVD(JOBZ, UPLO,	N,	AP,	W,	Z, LDZ,	WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,	INFO)
Symmetric/Hermitian Band	SSBEV(JOBZ, UPLO,	N, KD,	AB, LDAB,	W,	Z, LDZ,	WORK,	INFO)
Eigenvalues/vectors	CHBEV(JOBZ, UPLO,	N, KD,	AB, LDAB,	W,	Z, LDZ,	WORK, RWORK,	INFO)
Divide and Conquer	SSBEVD(JOBZ, UPLO,	N, KD,	AB, LDAB,	W,	Z, LDZ,	WORK, LWORK, LIWORK, LIWORK,	INFO)
1	CHBEVD(JOBZ, UPLO,	N, KD,	AB, LDAB,	W,	Z, LDZ,	WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,	INFO)
Symmetric Tridiagonal Eigenvalues/vectors	SSTEV(JOBZ,	N,	D, E,		Z, LDZ,	WORK,	INFO)
Divide and Conquer	SSTEVD(JOBZ,	N,	D, E,		Z, LDZ,	WORK, LWORK, IWORK, LIWORK,	INFO)
General	SGEES(JOBVS, SORT, SELECT	', N,	A, LDA, SDIM,	WR, WI,	VS, LDVS,	WORK, LWORK,	BWORK, INFO)
Schur Factorization	CGEES(JOBVS, SORT, SELECT	, N,	A, LDA, SDIM,	W,	VS, LDVS,	WORK, LWORK, RWORK,	BWORK, INFO)
General	SGEEV(JOBVL, JOBVR,	Ν,	A, LDA,	WR, WI,	VL, LDVL, VR, LDVR,	, WORK, LWORK,	INFO)
Eigenvalues/vectors	CGEEV(JOBVL, JOBVR,	N,	A, LDA,	W,	VL, LDVL, VR, LDVR,	, WORK, LWORK, RWORK,	INFO)
General	SGESVD(JOBU, JOBVT,	м, м,	A, LDA,	s.	U, LDU, VT, LDVT,	, WORK, LWORK,	INFO)
Singular Values/Vectors	CGESVD(JOBU, JOBVT,	M, N,	A, LDA,	s,	U, LDU, VT, LDVT,	, WORK, LWORK, RWORK,	INFO)

Simple Driver Routines for Generalized Eigenvalue and Singular Value Problems

Matrix/Problem Type	Routine				
Symmetric-definite	SSYGV(ITYPE, JOBZ, UPLO,	N, A, LDA, B, LDB, W,		WORK, LWORK,	INFO)
${ m Eigenvalues}/{ m vectors}$	CHEGV(ITYPE, JOBZ, UPLO,	N, A, LDA, B, LDB, W,		WORK, LWORK, RWORK,	INFO)
Symmetric-definite	SSPGV(ITYPE, JOBZ, UPLO,	N.AP. BP. W.	Z. LDZ.	WORK.	INFO)
(Packed Storage) Eigenvalues/vectors	CHPGV (ITYPE, JOBZ, UPLO,	N, AP, BP, W,	Z, LDZ,	WORK, RWORK,	INFO)
Symmetric-definite (Band Storage) Eigenvalues/vectors	SSBGV(JOBZ, UPLO, CHBGV(JOBZ, UPLO,	N, KA, KB, AB, LDAB, BB, LDBB, W, N, KA, KB, AB, LDAB, BB, LDBB, W,	Z, LDZ, Z, LDZ,	WORK, WORK, RWORK,	INFO) INFO)
General	SGEGS(JOBVSL, JOBVSR,	N, A, LDA, B, LDB, ALPHAR, A	LPHAI, BETA, VSL, LDVSL, VSR, LDVSR,	, WORK, LWORK,	INFO)
Schur Factorization	CGEGS(JOBVSL, JOBVSR,	N, A, LDA, B, LDB, ALPHA,	BETA, VSL, LDVSL, VSR, LDVSR,	, WORK, LWORK, RWORK,	INFO)
General	SGEGV(JOBVL, JOBVR,	N, A, LDA, B, LDB, ALPHAR, A	LPHAI, BETA, VL, LDVL, VR, LDVR,	WORK, LWORK,	INFO)
${ m Eigenvalues/vectors}$	CGEGV(JOBVL, JOBVR,	N, A, LDA, B, LDB, ALPHA,	BETA, VL, LDVL, VR, LDVR,	WORK, LWORK, RWORK,	INFO)
General	SGGSVD(JOBU, JOBV, JOBQ, M, N, P,	K, L, A, LDA, B, LDB, ALPHA,	BETA, U, LDU, V, LDV, Q, LDQ;	, WORK, I	WORK, INFO)
Singular Values/Vectors	CGGSVD(JOBU, JOBV, JOBQ, M, N, P,	K, L, A, LDA, B, LDB, ALPHA,	BETA, U, LDU, V, LDV, Q, LDQ,	, WORK, RWORK, I	WORK, INFO)

Expert Drivers

Expert Driver Routines for Linear Equations

Matrix Type	Routine						
General	SGESVX(FACT, TRANS,	N,	NRHS, A, LDA,	AF, LDAF, IPIV, EQU	UED, R, C,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK	K, INFO)
	CGESVX(FACT, TRANS,	N,	NRHS, A, LDA,	AF, LDAF, IPIV, EQU	UED, R, C,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORH	(, INFO)
General Band	SGBSVX(FACT, TRANS,	N, KL, KU,	NRHS, AB, LDAB,	AFB, LDAFB, IPIV, EQU	UED, R, C,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK	K, INFO)
	CGBSVX(FACT, TRANS,	N, KL, KU,	NRHS, AB, LDAB,	AFB, LDAFB, IPIV, EQU	UED, R, C,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORH	<, INFO)
General Tridiagonal	SGTSVX(FACT, TRANS,	N,	NRHS, DL, D, DU,	, DLF, DF, DUF, DU2, IF	PIV,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK	K, INFO)
	CGTSVX(FACT, TRANS,	N,	NRHS, DL, D, DU,	, DLF, DF, DUF, DU2, IF	PIV,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK	(, INFO)
Symmetric/Hermitian	SPOSVX(FACT, UPLO,	N,	NRHS, A, LDA,	AF, LDAF, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORF	K, INFO)
Positive Definite	CPOSVX(FACT, UPLO,	N,	NRHS, A, LDA,	AF, LDAF, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORF	(, INFO)
${ m Symmetric/Hermitian}$	SPPSVX(FACT, UPLO,	N,	NRHS, AP,	AFP, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORF	K, INFO)
Positive Definite (Packed Storage)	CPPSVX(FACT, UPLO,	N,	NRHS, AP,	AFP, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORF	(, INFO)
Symmetric/Hermitian	SPBSVX(FACT, UPLO,	N, KD,	NRHS, AB, LDAB,	AFB, LDAFB, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORF	K, INFO)
Positive Definite Band	CPBSVX(FACT, UPLO,	N, KD,	NRHS, AB, LDAB,	AFB, LDAFB, EQU	UED, S,	B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK	(, INFO)
Symmetric/Hermitian	SPTSVX(FACT,	N,	NRHS, D, E,	DF, EF,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK,	INFO)
Positive Definite Tridiagonal	CPTSVX(FACT,	N,	NRHS, D, E,	DF, EF,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORF	K, INFO)
Symmetric/Hermitian	SSYSVX(FACT, UPLO,	N,	NRHS, A, LDA,	AF, LDAF, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORF	K, INFO)
Indefinite	CSYSVX(FACT, UPLO,	N,	NRHS, A, LDA,	AF, LDAF, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORF	K, INFO)
	CHESVX(FACT, UPLO,	N,	NRHS, A, LDA,	AF, LDAF, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORF	(, INFO)
Symmetric/Hermitian	SSPSVX(FACT, UPLO,	N,	NRHS, AP,	AFP, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORF	K, INFO)
Indefinite (Packed Storage)	CSPSVX(FACT, UPLO,	N,	NRHS, AP,	AFP, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORF	K, INFO)
	CHPSVX(FACT, UPLO,	N,	NRHS, AP,	AFP, IPIV,		B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORF	K, INFO)

Expert Driver Routines for Linear Least Squares Problems

Problem Type	Routine	
Solve Using Orthogonal Factor	SGELSX(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, INFO)
	CGELSX(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, RWORK, INFO)
Solve Using SVD,	SGELSS(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO)
Allowing for Rank-Deficiency	CGELSS(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO)

Matrix/Problem Type	Routine	
Symmetric/Hermitian	SSYEVX(JOBZ, RANGE, UPLO, N, A, LDA,	VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO)
Eigenvalues/vectors	CHEEVX(JOBZ, RANGE, UPLO, N, A, LDA,	VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL, INFO)
Symmetric/Hermitian	SSPEVX(JOBZ, RANGE, UPLO, N, AP,	VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IAIL, INFO)
(Packed Storage)	CHPEVX(JOBZ, RANGE, UPLO, N, AP,	VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
Eigenvalues/vectors		
Symmetric/Hermitian Band	SSBEVX(JOBZ, RANGE, UPLO, N, KD, AB, LDAF	AB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IWORK, IFAIL, INFO)
Eigenvalues/vectors	CHBEVX(JOBZ, RANGE, UPLO, N, KD, AB, LDAE	AB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
Symmetric Tridiagonal	SSTEVX(JOBZ, RANGE, N, D, E,	VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IWORK, IFAIL, INFO)
m Eigenvalues/vectors		

Expert Driver Routines for Standard Nonsymmetric Eigenvalue Problems

Problem Type	Routine		
Schur	SGEESX(JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,	, WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK	, INFO)
Factorization	CGEESX(JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,	, W, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, BWORK	, INFO)
Eigenvalues/	SGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA,	WR, WI, VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV, WORK, LWORK, IWORK,	INFO)
vectors	CGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA,	W, VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV, WORK, LWORK, RWORK,	INFO)

Meaning of prefixes

Routines beginning with "S" are available in:

S - REAL D - DOUBLE PRECISION Routines beginning with "C" are available in:

C - COMPLEX Z - COMPLEX*16 Note: COMPLEX*16 may not be supported by all machines