data_base
❭ db_initializers
❭ synapse_activation_binning
❭ synapse_activation_postprocess_dask
synapse_activation_postprocess_dask¶
- data_base.db_initializers.synapse_activation_binning.synapse_activation_postprocess_dask(ddf, **kwargs)¶
Calculates bins of synapse activation per trial from a dask dataframe.
- Parameters:¶
ddf (dask.dataframe) – synapse activation dask dataframe
groupby (str) – species for which subgroups the bins should be calculated. Available values include: -
celltype
-presynaptic\_column
-proximal
(soma distance < 500 um) -EI
(Lumping the EXC / INH celltypes together) -binned\_somadist
: synapse counts for all 50 microns - any column in the specified dataframe.db (DataBase) – if specified, the result will be computed immediately and saved in the database immediately.
get (dask scheduler) – only has an effect if ‘db’ kwarg is provided. In this case, it allows to specify a dask scheduler for the computation.
scheduler (dask scheduler) – Specify a dask scheduler for the computation (e.g.
dask.distributed.Client.get()
)prefun (callable) – A function to preprocess the synapse activation dataframe before binning. The function should take a pandas dataframe and return a pandas dataframe. Default:
prefun()
applyfun (callable) – A function to bin the synapse activations. The function should take a pandas dataframe and return a numpy array. Default:
applyfun()
postfun (callable) – A function to postprocess the binned synapse activations. The function should take a pandas series and return a numpy array. Default:
postfun()
- Returns:¶
If computed, this will return a dictionary containing numpy arrays, whose rows are sim trials, and columns are time bins. The dictionary keys are defined by
groupby
.- Return type:¶
dask.delayed
See also
synapse_activation_postprocess_pandas()
for the non-delayed version of this method.