data_base
❭ db_initializers
❭ synapse_activation_binning
❭ synapse_activation_postprocess_pandas
synapse_activation_postprocess_pandas¶
- data_base.db_initializers.synapse_activation_binning.synapse_activation_postprocess_pandas(pdf, groupby='', prefun=None, applyfun=None, postfun=None)¶
Calculates bins of synapse activation per trial from a pandas dataframe.
- Parameters:¶
pdf (
pandas.DataFrame
) – synapse activation dask dataframegroupby (str) – species for which subgroups the bins should be calculated. Available values include:
celltype
presynaptic\_column
proximal
(soma distance < 500 um)EI
(Lumping the EXC / INH celltypes together)binned\_somadist
: synapse counts for all 50 micronsany column in the specified dataframe.
db (DataBase) – if specified, the result will be computed immediately and saved in the database immediately.
get (dask scheduler) – Specify a dask scheduler for the computation (e.g.
dask.distributed.Client.get()
)prefun (callable) – A function to preprocess the synapse activation dataframe before binning. The function should take a pandas dataframe and return a pandas dataframe. Default:
prefun()
applyfun (callable) – A function to bin the synapse activations. The function should take a pandas dataframe and return a numpy array. Default:
applyfun()
postfun (callable) – A function to postprocess the binned synapse activations. The function should take a pandas series and return a numpy array. Default:
postfun()
- Returns:¶
Dictionary containing numpy arrays, whose rows are sim trials, and columns are time bins. The dictionary keys are defined by
groupby
.- Return type:¶
dict
See also
synapse_activation_postprocess_dask()
for the delayed version of this method.