|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.grogra.graph.impl.Edge de.grogra.graph.impl.Node de.grogra.imp3d.shading.ChannelMapNode de.grogra.imp3d.shading.ColorMapNode de.grogra.imp3d.shading.Material de.grogra.imp3d.shading.Phong
public class Phong
A Phong
shader represents a Phong-like reflector.
Its bidirectional reflection/transmission distribution functions are
as follows:
At a given point x, let cd be the diffuse color (components R, G, B) at that point, α the alpha-component of the diffuse color and ct the transparency color. For each color component, set
Math2.fresnel(javax.vecmath.Vector3f, javax.vecmath.Vector3f, float, javax.vecmath.Vector3f, javax.vecmath.Vector3f)
.
interpolatedTransparency
is true
,
set
The bidirectional transmission distribution function is
Nested Class Summary |
---|
Nested classes/interfaces inherited from class de.grogra.graph.impl.Node |
---|
Node.AccessorBridge, Node.FieldAttributeAccessor, Node.NType |
Nested classes/interfaces inherited from interface de.grogra.util.Map |
---|
Map.Chain |
Field Summary | |
---|---|
static Node.NType |
$TYPE
|
static Node.NType.Field |
ambient$FIELD
|
static ColorMap |
DEFAULT_AMBIENT
|
static ColorMap |
DEFAULT_DIFFUSE
|
static ColorMap |
DEFAULT_DIFFUSE_TRANSPARENCY
|
static ColorMap |
DEFAULT_EMISSIVE
|
static float |
DEFAULT_SHININESS
|
static ColorMap |
DEFAULT_SPECULAR
|
static ColorMap |
DEFAULT_TRANSPARENCY
|
static float |
DEFAULT_TRANSPARENCY_SHININESS
|
static Node.NType.Field |
diffuse$FIELD
|
static Node.NType.Field |
diffuseTransparency$FIELD
|
static Node.NType.Field |
emissive$FIELD
|
static Node.NType.Field |
interpolatedTransparency$FIELD
|
static float |
MAX_SHININESS
|
static Node.NType.Field |
shininess$FIELD
|
static Node.NType.Field |
specular$FIELD
|
static Node.NType.Field |
transparency$FIELD
|
static Node.NType.Field |
transparencyShininess$FIELD
|
Fields inherited from class de.grogra.imp3d.shading.ChannelMapNode |
---|
AMBIENT, COLOR, COLOR_2, DIFFUSE_TRANSPARENCY, DISPLACEMENT, EMISSIVE, FIRST_OP, INPUT, input$FIELD, MIN_UNUSED_SPECIAL_OF_TARGET, SECOND_OP, SHININESS, SPECULAR, TRANSPARENCY, TRANSPARENCY_SHININESS |
Fields inherited from class de.grogra.graph.impl.Node |
---|
ADDITIONAL_FIELDS, bits, DELETED, EXTENT_BIT, EXTENT_MASK, extentIndex$FIELD, extentTail$FIELD, HAS_OBSERVERS, IS_INTERPRETIVE, isInterpretive$FIELD, LAST_EXTENT_INDEX, layer$FIELD, MARK, mark$FIELD, MIME_TYPE, MIN_UNUSED_SPECIAL_OF_SOURCE, name$FIELD, USED_BITS |
Fields inherited from interface de.grogra.ray.physics.Shader |
---|
LAMBERTIAN_VARIANCE |
Fields inherited from interface de.grogra.ray.physics.Scattering |
---|
DELTA_FACTOR, IS_NON_OPAQUE, MIN_UNUSED_FLAG, NEEDS_NORMAL, NEEDS_POINT, NEEDS_TANGENTS, NEEDS_TRANSFORMATION, NEEDS_UV, RANDOM_RAYS_GENERATE_ORIGINS |
Fields inherited from interface de.grogra.icon.Icon |
---|
DEFAULT, DISABLED |
Fields inherited from interface de.grogra.util.Map |
---|
DEFAULT_VALUE, EMPTY_MAP |
Constructor Summary | |
---|---|
Phong()
|
Method Summary | |
---|---|
void |
accept(ChannelMapNodeVisitor visitor)
|
void |
accept(ShaderVisitor visitor)
|
Phong |
clone()
|
float |
computeBSDF(Environment env,
Vector3f in,
Spectrum specIn,
Vector3f out,
boolean adjoint,
Spectrum bsdf)
Evaluates bidirectional scattering distribution function for given input. |
void |
computeMaxRays(Environment env,
Vector3f out,
Spectrum outSpec,
Ray reflected,
Tuple3f refVariance,
Ray transmitted,
Tuple3f transVariance)
Computes, for the given input, the reflected and transmitted importance rays for which the reflection/transmission probability densities (integrated over the spectrum) attain a maximum. |
static float |
convertShininess(float x)
|
static Phong |
createPhong()
|
void |
generateRandomRays(Environment env,
Vector3f out,
Spectrum specOut,
RayList rays,
boolean adjoint,
java.util.Random rnd)
Pseudorandomly generates, for the given input, a set of scattered rays. |
ChannelMap |
getAmbient()
|
int |
getAverageColor()
Returns an average color for the scattering entity. |
ChannelMap |
getDiffuse()
|
ChannelMap |
getDiffuseTransparency()
|
ChannelMap |
getEmissive()
|
int |
getFlags()
|
protected Node.NType |
getNTypeImpl()
This method returns the Node.NType which describes the managed
fields of the class of this node. |
ChannelMap |
getShininess()
|
ChannelMap |
getSpecular()
|
ChannelMap |
getTransparency()
|
ChannelMap |
getTransparencyShininess()
|
boolean |
isInterpolatedTransparency()
|
boolean |
isTransparent()
|
static void |
main(java.lang.String[] args)
|
protected Node |
newInstance()
This method returns a new instance of the class of this node. |
void |
setAmbient(ChannelMap value)
|
void |
setDiffuse(ChannelMap value)
|
void |
setDiffuseTransparency(ChannelMap value)
|
void |
setEmissive(ChannelMap value)
|
void |
setInterpolatedTransparency(boolean value)
|
void |
setShininess(ChannelMap value)
|
void |
setSpecular(ChannelMap value)
|
void |
setTransparency(ChannelMap value)
|
void |
setTransparencyShininess(ChannelMap value)
|
void |
shade(Environment env,
RayList rays,
Vector3f out,
Spectrum outSpec,
Tuple3d outColor)
Computes color of outgoing light ray for given input. |
Methods inherited from class de.grogra.imp3d.shading.Material |
---|
renderLine, renderLine |
Methods inherited from class de.grogra.imp3d.shading.ColorMapNode |
---|
drawImage, getIcon, getIconBounds, getIconSource, getImage, getImage, getImageSource, getInputData, getPreferredIconSize, getRenderedImage, getSizeRatio, isMutable, paintIcon, prepareIcon, renderImage |
Methods inherited from class de.grogra.imp3d.shading.ChannelMapNode |
---|
accept, getFloatValue, getInput, getObjectValue, setInput |
Methods inherited from class de.grogra.graph.impl.Edge |
---|
addEdgeBits, getBitMark, getEdgeBits, getObjectMark, getSpecialEdgeDescriptor, parseEdgeKeys, remove, removeEdgeBits, setBitMark, setEdgeBits, setObjectMark, testEdgeBits |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.grogra.math.ChannelMap |
---|
accept, getFloatValue, getObjectValue, getStamp |
Methods inherited from interface de.grogra.pf.ui.RenderedIcon |
---|
getStamp |
Methods inherited from interface de.grogra.persistence.PersistenceCapable |
---|
getBitMark, getObjectMark, setBitMark, setObjectMark |
Field Detail |
---|
public static final Node.NType $TYPE
public static final Node.NType.Field ambient$FIELD
public static final ColorMap DEFAULT_AMBIENT
public static final ColorMap DEFAULT_DIFFUSE
public static final ColorMap DEFAULT_DIFFUSE_TRANSPARENCY
public static final ColorMap DEFAULT_EMISSIVE
public static final float DEFAULT_SHININESS
public static final ColorMap DEFAULT_SPECULAR
public static final ColorMap DEFAULT_TRANSPARENCY
public static final float DEFAULT_TRANSPARENCY_SHININESS
public static final Node.NType.Field diffuse$FIELD
public static final Node.NType.Field diffuseTransparency$FIELD
public static final Node.NType.Field emissive$FIELD
public static final Node.NType.Field interpolatedTransparency$FIELD
public static final float MAX_SHININESS
public static final Node.NType.Field shininess$FIELD
public static final Node.NType.Field specular$FIELD
public static final Node.NType.Field transparency$FIELD
public static final Node.NType.Field transparencyShininess$FIELD
Constructor Detail |
---|
public Phong()
Method Detail |
---|
public void accept(ChannelMapNodeVisitor visitor)
accept
in class ChannelMapNode
public void accept(ShaderVisitor visitor)
public Phong clone()
clone
in class Node
public float computeBSDF(Environment env, Vector3f in, Spectrum specIn, Vector3f out, boolean adjoint, Spectrum bsdf)
Scattering
The computed spectrum is an integral over the spectrum of the following product:
env.point
,
ωi the (negated) direction of the incoming light ray,
νi the frequency where the incoming ray is sampled,
ωo the direction of the outgoing light ray,
νo the frequency where the outgoing ray is sampled,
and θ the angle between the surface normal and out
.
If adjoint
is false
, in
and
out
describe true light rays from light sources to sensors.
In this case, ωi = in
,
ωo = out
, and the integral is
bsdf
(ν) = |cos θ| ∫ BSDF(in
, νi;
out
, ν) specIn
(νi) dνi
adjoint
is true
. in
and
out
then describe importance rays (inverse light rays
from sensors to light sources). In this case,
ωi = out
,
ωo = in
, and the integral is
bsdf
(ν) = |cos θ| ∫
BSDF(out
, ν;
in
, νo) specIn
(νo) dνo
If this Scattering
instance is in fact a
Light
source, adjoint
is false
,
and the BSDF is defined as BSDF(in
, μ; ω, ν)
= L1(ω, ν) δ(μ - ν),
i.e., the directional distribution
of the emitted radiance at env.point
, see Emitter
.
In this case, in
is not used.
If this Scattering
instance is in fact a
Sensor
, adjoint
is true
,
and the BSDF is defined as BSDF(ω, ν; in
, μ)
= W1(ω, ν) δ(μ - ν),
i.e., the directional distribution
of the emitted importance at env.point
, see Emitter
.
In this case, in
is not used.
The computation should be physically valid. This excludes, e.g., ambient or emissive light contributions.
The returned value
is the value of the probability density pω
that would be calculated by Scattering.generateRandomRays(de.grogra.ray.physics.Environment, javax.vecmath.Vector3f, de.grogra.ray.physics.Spectrum, de.grogra.ray.util.RayList, boolean, java.util.Random)
if
the ray happened to be one of the randomly generated rays.
env
- the environment for scatteringin
- the (negated) direction unit vector of the incoming ray
(i.e., pointing away from the surface)specIn
- the spectrum of the incoming rayout
- the direction unit vector of the outgoing ray
(i.e., pointing away from the surface)adjoint
- light ray or importance ray?bsdf
- the computed spectrum of the outgoing ray will be placed in here
public void computeMaxRays(Environment env, Vector3f out, Spectrum outSpec, Ray reflected, Tuple3f refVariance, Ray transmitted, Tuple3f transVariance)
Shader
in
, is
in
) / R
in
).
The transmission probability density is defined correspondingly.
The color
-fields are set to the total
reflectivity/transparency for the incident direction
for each color component R, G, B. Thus, for physically plausible
BRDF/BTDF, the component-wise sum of reflected.color
and
transmitted.color
lies in the interval [0, 1],
and the difference to 1 is the amount absorbed.
The color
may be zero if there is no reflected or transmitted ray,
respectively, i.e., if the surface is fully transparent, opaque,
or absorbing. The origin-fields of the rays will never be set.
The computed variances are defined to be, for each color component,
(approximations for) the angular mean quadratic
deviations of the densities from the returned maximal ray directions.
E.g., for perfect reflection/transmission, these variances are zero,
whereas for a perfect lambertian reflector, the variance of reflection
is ∫ cos θ (1 / π) θ2 dω
= (π2 - 4) / 8.
This is the value of Shader.LAMBERTIAN_VARIANCE
.
The ray properties which are not mentioned are neither used nor modified. These are the origin and its density, and the direction density.
env
- the environment for scatteringout
- the (negated) direction unit vector of the incoming ray
(i.e., pointing away from the surface)outSpec
- spectrum of incoming rayreflected
- the reflected ray with maximal probabilityrefVariance
- the angular mean quadratic deviation from reflected
transmitted
- the transmitted ray with maximal probabilitytransVariance
- the angular mean quadratic deviation from transmitted
public static float convertShininess(float x)
public static Phong createPhong()
public void generateRandomRays(Environment env, Vector3f out, Spectrum specOut, RayList rays, boolean adjoint, java.util.Random rnd)
Scattering
adjoint
is false
,
out
= ωo describes
the direction of an outgoing light ray.
In this case, the integration is with respect to ωi.
Let g(ω, ν; out
, μ)
= BSDF(ω, ν; out
, μ)
adjoint
is true
. In this case,
out
= ωi describes
the direction of an outgoing importance ray (an inverse light ray).
Now the integration is with respect to ωo.
Let g(ω, ν; out
, μ)
= BSDF(out
, μ; ω, ν)
rays.size
). Then, for every
frequency ν the sum
out
, μ)
specOut
(μ) dμ dω
If this Scattering
instance is in fact a
Light
source, adjoint
is true
,
and the BSDF is defined as BSDF(out
, μ; ω, ν)
= L1(ω, ν) δ(μ - ν),
i.e., the directional distribution
of the emitted radiance at env.point
, see Emitter
.
In this case, out
is not used.
If this Scattering
instance is in fact a
Sensor
, adjoint
is false
,
and the BSDF is defined as BSDF(ω, ν; out
, μ)
= W1(ω, ν) δ(μ - ν),
i.e., the directional distribution
of the emitted importance at env.point
, see Emitter
.
In this case, out
is not used.
Let pω be the probability density
used for the ray direction (measured with respect to
solid angle ω),
then the field directionDensity
of the ray i
is set to pω(di).
For ideal specular reflection or transmission, or for directional
lights or sensors, pω is not
a regular function, the value directionDensity
will
be set to a multiple of Scattering.DELTA_FACTOR
.
The ray properties which are not mentioned in the given formulas are neither used nor modified. These are the origin and its density.
env
- the environment for scatteringout
- the direction unit vector of the outgoing ray
(i.e., pointing away from the surface)specOut
- the spectrum of the outgoing rayrays
- the rays to be generatedadjoint
- represents out
a light ray or an importance ray?rnd
- pseudorandom generatorScattering.computeBSDF(de.grogra.ray.physics.Environment, javax.vecmath.Vector3f, de.grogra.ray.physics.Spectrum, javax.vecmath.Vector3f, boolean, de.grogra.ray.physics.Spectrum)
public ChannelMap getAmbient()
public int getAverageColor()
Scattering
public ChannelMap getDiffuse()
public ChannelMap getDiffuseTransparency()
public ChannelMap getEmissive()
public int getFlags()
protected Node.NType getNTypeImpl()
Node
Node.NType
which describes the managed
fields of the class of this node. This method has to be implemented
in every concrete subclass.
getNTypeImpl
in class Node
public ChannelMap getShininess()
public ChannelMap getSpecular()
public ChannelMap getTransparency()
public ChannelMap getTransparencyShininess()
public boolean isInterpolatedTransparency()
public boolean isTransparent()
public static void main(java.lang.String[] args)
protected Node newInstance()
Node
newInstance
in class Node
public void setAmbient(ChannelMap value)
public void setDiffuse(ChannelMap value)
public void setDiffuseTransparency(ChannelMap value)
public void setEmissive(ChannelMap value)
public void setInterpolatedTransparency(boolean value)
public void setShininess(ChannelMap value)
public void setSpecular(ChannelMap value)
public void setTransparency(ChannelMap value)
public void setTransparencyShininess(ChannelMap value)
public void shade(Environment env, RayList rays, Vector3f out, Spectrum outSpec, Tuple3d outColor)
Shader
out
) ck,j
env.point
,
ωk and ck the direction and color of ray k,
and θk the angle between the surface normal
and ωk.
The computation may include physically invalid contributions, which may not fit into the formula above, e.g., ambient or emissive light contributions.
env
- the environment for scatteringrays
- the incoming raysout
- the direction unit vector of the outgoing ray
(i.e., pointing away from the surface)outSpec
- spectrum of outgoing rayoutColor
- the output color will be placed in here
|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |