de.grogra.imp3d.shading
Class RGBAShader

java.lang.Object
  extended by javax.vecmath.Tuple4f
      extended by javax.vecmath.Color4f
          extended by de.grogra.imp3d.shading.RGBAShader
All Implemented Interfaces:
Icon, IconSource, Manageable, Shareable, Scattering, Shader, java.io.Serializable, java.lang.Cloneable

public final class RGBAShader
extends Color4f
implements Shader, Shareable, Manageable, IconSource, Icon

A RGBAShader implements a simple lambertian material with a single color and an alpha-value for the transparency. Some methods which are related to the color palette of the EGA graphics card are declared, they are used in the context of the emulation of the GROGRA software.

Author:
Ole Kniemeyer
See Also:
Serialized Form

Field Summary
static ManageableType $TYPE
           
static RGBAShader BLACK
          RGBAShader whose color is Color.BLACK.
static RGBAShader BLUE
          RGBAShader whose color is Color.BLUE.
static RGBAShader CYAN
          RGBAShader whose color is Color.CYAN.
static RGBAShader DARK_GRAY
          RGBAShader whose color is Color.DARK_GRAY.
static RGBAShader EGA_0
          RGBAShader whose color is EGA color number 0.
static RGBAShader EGA_1
          RGBAShader whose color is EGA color number 1.
static RGBAShader EGA_10
          RGBAShader whose color is EGA color number 10.
static RGBAShader EGA_11
          RGBAShader whose color is EGA color number 11.
static RGBAShader EGA_12
          RGBAShader whose color is EGA color number 12.
static RGBAShader EGA_13
          RGBAShader whose color is EGA color number 13.
static RGBAShader EGA_14
          RGBAShader whose color is EGA color number 14.
static RGBAShader EGA_15
          RGBAShader whose color is EGA color number 15.
static RGBAShader EGA_2
          RGBAShader whose color is EGA color number 2.
static RGBAShader EGA_3
          RGBAShader whose color is EGA color number 3.
static RGBAShader EGA_4
          RGBAShader whose color is EGA color number 4.
static RGBAShader EGA_5
          RGBAShader whose color is EGA color number 5.
static RGBAShader EGA_6
          RGBAShader whose color is EGA color number 6.
static RGBAShader EGA_7
          RGBAShader whose color is EGA color number 7.
static RGBAShader EGA_8
          RGBAShader whose color is EGA color number 8.
static RGBAShader EGA_9
          RGBAShader whose color is EGA color number 9.
static RGBAShader GRAY
          RGBAShader whose color is Color.GRAY.
static RGBAShader GREEN
          RGBAShader whose color is Color.GREEN.
static RGBAShader LIGHT_GRAY
          RGBAShader whose color is Color.LIGHT_GRAY.
static RGBAShader MAGENTA
          RGBAShader whose color is Color.MAGENTA.
static RGBAShader ORANGE
          RGBAShader whose color is Color.ORANGE.
static RGBAShader PINK
          RGBAShader whose color is Color.PINK.
static RGBAShader RED
          RGBAShader whose color is Color.RED.
static RGBAShader WHITE
          RGBAShader whose color is Color.WHITE.
static RGBAShader YELLOW
          RGBAShader whose color is Color.YELLOW.
 
Fields inherited from class javax.vecmath.Tuple4f
w, x, y, z
 
Fields inherited from interface de.grogra.ray.physics.Shader
LAMBERTIAN_VARIANCE
 
Fields inherited from interface de.grogra.ray.physics.Scattering
DELTA_FACTOR, IS_NON_OPAQUE, MIN_UNUSED_FLAG, NEEDS_NORMAL, NEEDS_POINT, NEEDS_TANGENTS, NEEDS_TRANSFORMATION, NEEDS_UV, RANDOM_RAYS_GENERATE_ORIGINS
 
Fields inherited from interface de.grogra.icon.Icon
DEFAULT, DISABLED
 
Constructor Summary
RGBAShader()
           
RGBAShader(Color4f color)
           
RGBAShader(float red, float green, float blue)
           
RGBAShader(float red, float green, float blue, float alpha)
           
RGBAShader(int rgba)
          Specify colors as ARGB integer.
RGBAShader(Shader a)
           
 
Method Summary
 void accept(ShaderVisitor visitor)
           
 void addReference(SharedObjectReference ref)
           
 void appendReferencesTo(java.util.List out)
           
 java.lang.Object clone()
           
 float computeBSDF(Environment env, Vector3f in, Spectrum specIn, Vector3f out, boolean adjoint, Spectrum bsdf)
          Evaluates bidirectional scattering distribution function for given input.
 void computeMaxRays(Environment env, Vector3f in, Spectrum specIn, Ray reflected, Tuple3f refVariance, Ray transmitted, Tuple3f transVariance)
          Computes, for the given input, the reflected and transmitted importance rays for which the reflection/transmission probability densities (integrated over the spectrum) attain a maximum.
 void fieldModified(PersistenceField field, int[] indices, Transaction t)
           
static RGBAShader forEGAColor(int index)
          Returns the RGBAShader whose color has the specified index in the palette of the EGA graphics card.
 void generateRandomRays(Environment env, Vector3f out, Spectrum specOut, RayList rays, boolean adjoint, java.util.Random rnd)
          Pseudorandomly generates, for the given input, a set of scattered rays.
 int getAverageColor()
          Returns an average color for the scattering entity.
static int getEGAColorIndex(Color3f c)
          Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.
static int getEGAColorIndex(Color4f c)
          Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.
static int getEGAColorIndex(float r, float g, float b)
          Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.
 int getFlags()
           
 Icon getIcon(java.awt.Dimension size, int state)
           
 java.awt.Rectangle getIconBounds()
           
 IconSource getIconSource()
           
 java.awt.Image getImage()
           
 java.awt.Image getImage(int w, int h)
           
 java.net.URL getImageSource()
           
 ManageableType getManageableType()
           
 java.awt.Dimension getPreferredIconSize(boolean small)
           
 SharedObjectProvider getProvider()
           
 int getStamp()
          Returns a stamp for this object.
 void initProvider(SharedObjectProvider provider)
           
 boolean isMutable()
           
 boolean isPredefined()
           
 boolean isTransparent()
           
 Manageable manageableReadResolve()
           
 java.lang.Object manageableWriteReplace()
           
 void paintIcon(java.awt.Component c, java.awt.Graphics2D g, int x, int y, int w, int h, int state)
           
 void prepareIcon()
           
 void removeReference(SharedObjectReference ref)
           
 void scale(double r, Tuple3d color)
           
 void shade(Environment env, RayList in, Vector3f out, Spectrum specOut, Tuple3d color)
          Computes color of outgoing light ray for given input.
 
Methods inherited from class javax.vecmath.Color4f
get, set
 
Methods inherited from class javax.vecmath.Tuple4f
absolute, absolute, add, add, clamp, clamp, clampMax, clampMax, clampMin, clampMin, epsilonEquals, equals, equals, get, get, hashCode, interpolate, interpolate, negate, negate, scale, scale, scaleAdd, scaleAdd, set, set, set, set, sub, sub, toString
 
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
 

Field Detail

$TYPE

public static final ManageableType $TYPE

BLACK

public static final RGBAShader BLACK
RGBAShader whose color is Color.BLACK.


BLUE

public static final RGBAShader BLUE
RGBAShader whose color is Color.BLUE.


CYAN

public static final RGBAShader CYAN
RGBAShader whose color is Color.CYAN.


DARK_GRAY

public static final RGBAShader DARK_GRAY
RGBAShader whose color is Color.DARK_GRAY.


EGA_0

public static final RGBAShader EGA_0
RGBAShader whose color is EGA color number 0.


EGA_1

public static final RGBAShader EGA_1
RGBAShader whose color is EGA color number 1.


EGA_10

public static final RGBAShader EGA_10
RGBAShader whose color is EGA color number 10.


EGA_11

public static final RGBAShader EGA_11
RGBAShader whose color is EGA color number 11.


EGA_12

public static final RGBAShader EGA_12
RGBAShader whose color is EGA color number 12.


EGA_13

public static final RGBAShader EGA_13
RGBAShader whose color is EGA color number 13.


EGA_14

public static final RGBAShader EGA_14
RGBAShader whose color is EGA color number 14.


EGA_15

public static final RGBAShader EGA_15
RGBAShader whose color is EGA color number 15.


EGA_2

public static final RGBAShader EGA_2
RGBAShader whose color is EGA color number 2.


EGA_3

public static final RGBAShader EGA_3
RGBAShader whose color is EGA color number 3.


EGA_4

public static final RGBAShader EGA_4
RGBAShader whose color is EGA color number 4.


EGA_5

public static final RGBAShader EGA_5
RGBAShader whose color is EGA color number 5.


EGA_6

public static final RGBAShader EGA_6
RGBAShader whose color is EGA color number 6.


EGA_7

public static final RGBAShader EGA_7
RGBAShader whose color is EGA color number 7.


EGA_8

public static final RGBAShader EGA_8
RGBAShader whose color is EGA color number 8.


EGA_9

public static final RGBAShader EGA_9
RGBAShader whose color is EGA color number 9.


GRAY

public static final RGBAShader GRAY
RGBAShader whose color is Color.GRAY.


GREEN

public static final RGBAShader GREEN
RGBAShader whose color is Color.GREEN.


LIGHT_GRAY

public static final RGBAShader LIGHT_GRAY
RGBAShader whose color is Color.LIGHT_GRAY.


MAGENTA

public static final RGBAShader MAGENTA
RGBAShader whose color is Color.MAGENTA.


ORANGE

public static final RGBAShader ORANGE
RGBAShader whose color is Color.ORANGE.


PINK

public static final RGBAShader PINK
RGBAShader whose color is Color.PINK.


RED

public static final RGBAShader RED
RGBAShader whose color is Color.RED.


WHITE

public static final RGBAShader WHITE
RGBAShader whose color is Color.WHITE.


YELLOW

public static final RGBAShader YELLOW
RGBAShader whose color is Color.YELLOW.

Constructor Detail

RGBAShader

public RGBAShader()

RGBAShader

public RGBAShader(Color4f color)

RGBAShader

public RGBAShader(float red,
                  float green,
                  float blue)

RGBAShader

public RGBAShader(float red,
                  float green,
                  float blue,
                  float alpha)

RGBAShader

public RGBAShader(int rgba)
Specify colors as ARGB integer. This means the bits 31-24 are alpha, 23-16 are red, 15-8 are green and 7-0 are blue.

Parameters:
rgba - color as 0xAARRGGBB

RGBAShader

public RGBAShader(Shader a)
Method Detail

accept

public void accept(ShaderVisitor visitor)

addReference

public void addReference(SharedObjectReference ref)
Specified by:
addReference in interface Shareable

appendReferencesTo

public void appendReferencesTo(java.util.List out)
Specified by:
appendReferencesTo in interface Shareable

clone

public java.lang.Object clone()
Overrides:
clone in class Color4f

computeBSDF

public float computeBSDF(Environment env,
                         Vector3f in,
                         Spectrum specIn,
                         Vector3f out,
                         boolean adjoint,
                         Spectrum bsdf)
Description copied from interface: Scattering
Evaluates bidirectional scattering distribution function for given input.

The computed spectrum is an integral over the spectrum of the following product:

|cos θ| BSDF(ωi, νi; ωo, νo)
where BSDF is the bidirectional scattering distribution function (= BRDF + BTDF) at the point env.point, ωi the (negated) direction of the incoming light ray, νi the frequency where the incoming ray is sampled, ωo the direction of the outgoing light ray, νo the frequency where the outgoing ray is sampled, and θ the angle between the surface normal and out.

If adjoint is false, in and out describe true light rays from light sources to sensors. In this case, ωi = in, ωo = out, and the integral is

bsdf(ν) = |cos θ| ∫ BSDF(in, νi; out, ν) specIni) dνi
Otherwise, adjoint is true. in and out then describe importance rays (inverse light rays from sensors to light sources). In this case, ωi = out, ωo = in, and the integral is
bsdf(ν) = |cos θ| ∫ BSDF(out, ν; in, νo) specIno) dνo

If this Scattering instance is in fact a Light source, adjoint is false, and the BSDF is defined as BSDF(in, μ; ω, ν) = L1(ω, ν) δ(μ - ν), i.e., the directional distribution of the emitted radiance at env.point, see Emitter. In this case, in is not used.

If this Scattering instance is in fact a Sensor, adjoint is true, and the BSDF is defined as BSDF(ω, ν; in, μ) = W1(ω, ν) δ(μ - ν), i.e., the directional distribution of the emitted importance at env.point, see Emitter. In this case, in is not used.

The computation should be physically valid. This excludes, e.g., ambient or emissive light contributions.

The returned value is the value of the probability density pω that would be calculated by Scattering.generateRandomRays(de.grogra.ray.physics.Environment, javax.vecmath.Vector3f, de.grogra.ray.physics.Spectrum, de.grogra.ray.util.RayList, boolean, java.util.Random) if the ray happened to be one of the randomly generated rays.

Specified by:
computeBSDF in interface Scattering
Parameters:
env - the environment for scattering
in - the (negated) direction unit vector of the incoming ray (i.e., pointing away from the surface)
specIn - the spectrum of the incoming ray
out - the direction unit vector of the outgoing ray (i.e., pointing away from the surface)
adjoint - light ray or importance ray?
bsdf - the computed spectrum of the outgoing ray will be placed in here
Returns:
the value of the probability density for the ray direction

computeMaxRays

public void computeMaxRays(Environment env,
                           Vector3f in,
                           Spectrum specIn,
                           Ray reflected,
                           Tuple3f refVariance,
                           Ray transmitted,
                           Tuple3f transVariance)
Description copied from interface: Shader
Computes, for the given input, the reflected and transmitted importance rays for which the reflection/transmission probability densities (integrated over the spectrum) attain a maximum. The reflection probability density (measured with respect to solid angle) for the outgoing importance direction (i.e., incoming light direction) ω, given a fixed incident direction in, is
pr(ω) = cos θ BRDF(ω, in) / R
where BRDF is the bidirectional reflectivity distribution function, θ the angle between the surface normal and ω, and R the total reflectivity for the incident direction, i.e., the integral over cos θ BRDF(ω, in). The transmission probability density is defined correspondingly.

The color-fields are set to the total reflectivity/transparency for the incident direction for each color component R, G, B. Thus, for physically plausible BRDF/BTDF, the component-wise sum of reflected.color and transmitted.color lies in the interval [0, 1], and the difference to 1 is the amount absorbed.

The color may be zero if there is no reflected or transmitted ray, respectively, i.e., if the surface is fully transparent, opaque, or absorbing. The origin-fields of the rays will never be set.

The computed variances are defined to be, for each color component, (approximations for) the angular mean quadratic deviations of the densities from the returned maximal ray directions. E.g., for perfect reflection/transmission, these variances are zero, whereas for a perfect lambertian reflector, the variance of reflection is ∫ cos θ (1 / π) θ2 dω = (π2 - 4) / 8. This is the value of Shader.LAMBERTIAN_VARIANCE.

The ray properties which are not mentioned are neither used nor modified. These are the origin and its density, and the direction density.

Specified by:
computeMaxRays in interface Shader
Parameters:
env - the environment for scattering
in - the (negated) direction unit vector of the incoming ray (i.e., pointing away from the surface)
specIn - spectrum of incoming ray
reflected - the reflected ray with maximal probability
refVariance - the angular mean quadratic deviation from reflected
transmitted - the transmitted ray with maximal probability
transVariance - the angular mean quadratic deviation from transmitted

fieldModified

public void fieldModified(PersistenceField field,
                          int[] indices,
                          Transaction t)
Specified by:
fieldModified in interface Manageable

forEGAColor

public static final RGBAShader forEGAColor(int index)
Returns the RGBAShader whose color has the specified index in the palette of the EGA graphics card.

Parameters:
index - palette index (only the lowest 4 bits are used)
Returns:
corresponding shader

generateRandomRays

public void generateRandomRays(Environment env,
                               Vector3f out,
                               Spectrum specOut,
                               RayList rays,
                               boolean adjoint,
                               java.util.Random rnd)
Description copied from interface: Scattering
Pseudorandomly generates, for the given input, a set of scattered rays. The scattered rays are generated such that they can be used for a Monte Carlo integration of a function f(ω;ν) over cos θ BSDF(ωi, νi; ωo, νo) in the following way: Let di and si denote the directions and spectra of the N generated rays (N = rays.size). Then, for every frequency ν the sum
1 / N ∑i si(ν) f(di; ν)
is an unbiased estimate for the integral
∫ cos θ f(ω; ν) g(ω, ν; out, μ) specOut(μ) dμ dω
θ is the angle between the surface normal and ω. The domain of integration is the whole sphere, since the bidirectional scattering distribution includes both reflection and transmission (BSDF = BRDF + BTDF).

If this Scattering instance is in fact a Light source, adjoint is true, and the BSDF is defined as BSDF(out, μ; ω, ν) = L1(ω, ν) δ(μ - ν), i.e., the directional distribution of the emitted radiance at env.point, see Emitter. In this case, out is not used.

If this Scattering instance is in fact a Sensor, adjoint is false, and the BSDF is defined as BSDF(ω, ν; out, μ) = W1(ω, ν) δ(μ - ν), i.e., the directional distribution of the emitted importance at env.point, see Emitter. In this case, out is not used.

Let pω be the probability density used for the ray direction (measured with respect to solid angle ω), then the field directionDensity of the ray i is set to pω(di). For ideal specular reflection or transmission, or for directional lights or sensors, pω is not a regular function, the value directionDensity will be set to a multiple of Scattering.DELTA_FACTOR.

The ray properties which are not mentioned in the given formulas are neither used nor modified. These are the origin and its density.

Specified by:
generateRandomRays in interface Scattering
Parameters:
env - the environment for scattering
out - the direction unit vector of the outgoing ray (i.e., pointing away from the surface)
specOut - the spectrum of the outgoing ray
rays - the rays to be generated
adjoint - represents out a light ray or an importance ray?
rnd - pseudorandom generator
See Also:
Scattering.computeBSDF(de.grogra.ray.physics.Environment, javax.vecmath.Vector3f, de.grogra.ray.physics.Spectrum, javax.vecmath.Vector3f, boolean, de.grogra.ray.physics.Spectrum)

getAverageColor

public int getAverageColor()
Description copied from interface: Scattering
Returns an average color for the scattering entity. This color is used for simplified graphical representations of the corresponding objects.

Specified by:
getAverageColor in interface Scattering
Returns:
an average color in Java's default sRGB color space, encoded as an int (0xAARRGGBB).

getEGAColorIndex

public static final int getEGAColorIndex(Color3f c)
Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.

Parameters:
c - a color
Returns:
index of closest EGA color

getEGAColorIndex

public static final int getEGAColorIndex(Color4f c)
Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.

Parameters:
c - a color
Returns:
index of closest EGA color

getEGAColorIndex

public static final int getEGAColorIndex(float r,
                                         float g,
                                         float b)
Returns the index of the color in the palette of the EGA graphics card which is closest to the specified color.

Parameters:
r - red value of color (between 0 and 1)
g - green value of color (between 0 and 1)
b - blue value of color (between 0 and 1)
Returns:
index of closest EGA color

getFlags

public int getFlags()
Specified by:
getFlags in interface Scattering

getIcon

public Icon getIcon(java.awt.Dimension size,
                    int state)
Specified by:
getIcon in interface IconSource

getIconBounds

public java.awt.Rectangle getIconBounds()
Specified by:
getIconBounds in interface Icon

getIconSource

public IconSource getIconSource()
Specified by:
getIconSource in interface Icon

getImage

public java.awt.Image getImage()
Specified by:
getImage in interface Icon

getImage

public java.awt.Image getImage(int w,
                               int h)
Specified by:
getImage in interface Icon

getImageSource

public java.net.URL getImageSource()
Specified by:
getImageSource in interface Icon

getManageableType

public ManageableType getManageableType()
Specified by:
getManageableType in interface Manageable

getPreferredIconSize

public java.awt.Dimension getPreferredIconSize(boolean small)
Specified by:
getPreferredIconSize in interface IconSource

getProvider

public SharedObjectProvider getProvider()
Specified by:
getProvider in interface Shareable

getStamp

public int getStamp()
Description copied from interface: Manageable
Returns a stamp for this object. Each modification to this object increments the stamp. The initial stamp is non-negative.

Specified by:
getStamp in interface Manageable
Returns:
a stamp

initProvider

public void initProvider(SharedObjectProvider provider)
Specified by:
initProvider in interface Shareable

isMutable

public boolean isMutable()
Specified by:
isMutable in interface Icon

isPredefined

public boolean isPredefined()

isTransparent

public boolean isTransparent()
Specified by:
isTransparent in interface Shader

manageableReadResolve

public Manageable manageableReadResolve()
Specified by:
manageableReadResolve in interface Manageable

manageableWriteReplace

public java.lang.Object manageableWriteReplace()
Specified by:
manageableWriteReplace in interface Manageable

paintIcon

public void paintIcon(java.awt.Component c,
                      java.awt.Graphics2D g,
                      int x,
                      int y,
                      int w,
                      int h,
                      int state)
Specified by:
paintIcon in interface Icon

prepareIcon

public void prepareIcon()
Specified by:
prepareIcon in interface Icon

removeReference

public void removeReference(SharedObjectReference ref)
Specified by:
removeReference in interface Shareable

scale

public void scale(double r,
                  Tuple3d color)

shade

public void shade(Environment env,
                  RayList in,
                  Vector3f out,
                  Spectrum specOut,
                  Tuple3d color)
Description copied from interface: Shader
Computes color of outgoing light ray for given input. The computed value is, for each color component j = R, G, B, the following sum over all incident rays k:
k |cos θk| BSDFjk, out) ck,j
where BSDFj is the bidirectional scattering distribution function (= BRDF + BTDF) at the point env.point, ωk and ck the direction and color of ray k, and θk the angle between the surface normal and ωk.

The computation may include physically invalid contributions, which may not fit into the formula above, e.g., ambient or emissive light contributions.

Specified by:
shade in interface Shader
Parameters:
env - the environment for scattering
in - the incoming rays
out - the direction unit vector of the outgoing ray (i.e., pointing away from the surface)
specOut - spectrum of outgoing ray
color - the output color will be placed in here