Routine Name |
Mark of Introduction |
Purpose |
g02brc | 3 |
nag_ken_spe_corr_coeff
Kendall and/or Spearman non-parametric rank correlation coefficients, allows variables and observations to be selectively disregarded |
g02btc | 7 |
nag_sum_sqs_update
Update a weighted sum of squares matrix with a new observation |
g02buc | 7 |
nag_sum_sqs
Computes a weighted sum of squares matrix |
g02bwc | 7 |
nag_cov_to_corr
Computes a correlation matrix from a sum of squares matrix |
g02bxc | 3 |
nag_corr_cov
Product-moment correlation, unweighted/weighted correlation and covariance matrix, allows variables to be disregarded |
g02byc | 6 |
nag_partial_corr
Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by g02bxc |
g02cac | 3 |
nag_simple_linear_regression
Simple linear regression with or without a constant term, data may be weighted |
g02cbc | 3 |
nag_regress_confid_interval
Simple linear regression confidence intervals for the regression line and individual points |
g02dac | 1 |
nag_regsn_mult_linear
Fits a general (multiple) linear regression model |
g02dcc | 2 |
nag_regsn_mult_linear_addrem_obs
Add/delete an observation to/from a general linear regression model |
g02ddc | 2 |
nag_regsn_mult_linear_upd_model
Estimates of regression parameters from an updated model |
g02dec | 2 |
nag_regsn_mult_linear_add_var
Add a new independent variable to a general linear regression model |
g02dfc | 2 |
nag_regsn_mult_linear_delete_var
Delete an independent variable from a general linear regression model |
g02dgc | 1 |
nag_regsn_mult_linear_newyvar
Fits a general linear regression model to new dependent variable |
g02dkc | 2 |
nag_regsn_mult_linear_tran_model
Estimates of parameters of a general linear regression model for given constraints |
g02dnc | 2 |
nag_regsn_mult_linear_est_func
Estimate of an estimable function for a general linear regression model |
g02eac | 7 |
nag_all_regsn
Computes residual sums of squares for all possible linear regressions for a set of independent variables |
g02ecc | 7 |
nag_cp_stat
Calculates R2 and CP values from residual sums of squares |
g02eec | 7 |
nag_step_regsn
Fits a linear regression model by forward selection |
g02fac | 1 |
nag_regsn_std_resid_influence
Calculates standardized residuals and influence statistics |
g02fcc | 7 |
nag_durbin_watson_stat
Computes Durbin–Watson test statistic |
g02gac | 4 |
nag_glm_normal
Fits a generalized linear model with Normal errors |
g02gbc | 4 |
nag_glm_binomial
Fits a generalized linear model with binomial errors |
g02gcc | 4 |
nag_glm_poisson
Fits a generalized linear model with Poisson errors |
g02gdc | 4 |
nag_glm_gamma
Fits a generalized linear model with gamma errors |
g02gkc | 4 |
nag_glm_tran_model
Estimates and standard errors of parameters of a general linear model for given constraints |
g02gnc | 4 |
nag_glm_est_func
Estimable function and the standard error of a generalized linear model |
g02hac | 4 |
nag_robust_m_regsn_estim
Robust regression, standard M-estimates |
g02hbc | 7 |
nag_robust_m_regsn_wts
Robust regression, compute weights for use with g02hdc |
g02hdc | 7 |
nag_robust_m_regsn_user_fn
Robust regression, compute regression with user-supplied functions and weights |
g02hfc | 7 |
nag_robust_m_regsn_param_var
Robust regression, variance-covariance matrix following g02hdc |
g02hkc | 4 |
nag_robust_corr_estim
Robust estimation of a correlation matrix, Huber's weight function |
g02hlc | 7 |
nag_robust_m_corr_user_fn
Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives |
g02hmc | 7 |
nag_robust_m_corr_user_fn_no_derr
Calculates a robust estimation of a correlation matrix, user-supplied weight function |